

On the job search and financial frictions

Marek Antosiewicz (IBS and WSE) Jacek Suda (NBP)

Motivation

- Situation in the labour markets is at the forefront of current discussions:
 - high unemployment in Spain, Greece, Portugal,
 - good situation in the labor market in the US.
- Great Recession brought attention to financial markets and their influence on macroeconomy.
- Growing literature combining financial and labour markets
- Most of the labor models are based on DMP framework but more new research on onthe-job search (OJS)
- Growing literature on introducing heterogeneity in DSGE.

What we do

- We build a model based on BM, MPV
 - exogenously heterogeneous firms,
 - on-the-job search labour market.
- We solve it using novel numerical method
 - projection within perturbation.
- We introduce financial market
 - working capital
- We study how the steady-state is affected by costly borrowing.
- We analyze model dynamics.

What we find

- Costly borrowing has following effect on steady-state distribution of firms:
 - Financing vacancies shifts size distribution of firms to the left: more small firms
 - Financing wages shifts size distribution of firms to the right: more larger firms
- Extent of poaching affected by the presence of financial markets
 - Costly borrowing decreases cross-firm flows more than flows from unemployment
- Following the productivity shock, the density of
 - Low productivity firms decreases
 - High productivity firms increases

Model

• There is a distribution of firms which differ in productivity

- Unemployed and employed job seekers are matched with vacancies
 - Employed only move to jobs with higher productivity (and wage)
- MPV wage posting replaced by Nash bargaining

- Firms distributed according to cdf $\Gamma(p)$ on interval $[p \ \overline{p}]$, pdf is $\gamma(p)$
- Type-p firm produces output with labour using linear technology: $A_t p$
- Type-*p* firm posts vacancies with intensity: $v_t(p)$
- Total vacancies are given by: $VAC_t = \int_p^{\overline{p}} v_t(p)\gamma(p)dp$
- Employed N_t and unemployed U_t send job offers with intensities: λ_e and λ_u

- Number of **potential** job matches is: $M_t = v VAC_t^{1-\mu} (U_t \lambda_u + N_t \lambda_e)^{\mu}$
- Denote probability of finding job as Φ_t and probability of filling vacancy as Ψ_t
- If we denote $N_t(p)$ as the cdf of employment, we can define average firm size as:

$$L_t(p) = \frac{dN_t(p)/dp}{\gamma(p)}$$

Dynamics of average firm size

• Average firm size evolves according to

$$L_{t+1}(p) = (1-\delta) \left(1 - \Phi_t^N \frac{\overline{VAC}_t(p)}{VAC_t} \right) L_t(p) + U_t \Phi_t^U \frac{v_t(p)}{VAC_t} + (1-\delta)N_t \Phi_t^N \frac{v_t(p)}{VAC_t} \frac{N_t(p)}{N_t} V_t(p) + U_t \Phi_t^U \frac{v_t(p)}{VAC_t} + (1-\delta)N_t \Phi_t^N \frac{v_t(p)}{VAC_t} \frac{N_t(p)}{N_t} V_t(p) + U_t \Phi_t^U \frac{v_t(p)}{VAC_t} + (1-\delta)N_t \Phi_t^N \frac{v_t(p)}{VAC_t} \frac{N_t(p)}{N_t} V_t(p) + U_t \Phi_t^U \frac{v_t(p)}{VAC_t} + (1-\delta)N_t \Phi_t^N \frac{v_t(p)}{VAC_t} \frac{N_t(p)}{N_t} V_t(p) + U_t \Phi_t^U \frac{v_t(p)}{VAC_t} + (1-\delta)N_t \Phi_t^N \frac{v_t(p)}{VAC_t} \frac{N_t(p)}{N_t} V_t(p) + U_t \Phi_t^U \frac{v_t(p)}{VAC_t} + (1-\delta)N_t \Phi_t^N \frac{v_t(p)}{VAC_t} \frac{N_t(p)}{N_t} V_t(p) + U_t \Phi_t^U \frac{v_t(p)}{VAC_t} + (1-\delta)N_t \Phi_t^N \frac{v_t(p)}{VAC_t} \frac{N_t(p)}{N_t} V_t(p) + U_t \Phi_t^U \frac{v_t(p)}{VAC_t} + (1-\delta)N_t \Phi_t^N \frac{v_t(p)}{VAC_t} \frac{N_t(p)}{N_t} V_t(p) + U_t \Phi_t^U \frac{v_t(p)}{VAC_t} + (1-\delta)N_t \Phi_t^N \frac{v_t(p)}{VAC_t} \frac{N_t(p)}{N_t} V_t(p) + U_t \Phi_t^U \frac{v_t(p)}{VAC_t} + (1-\delta)N_t \Phi_t^N \frac{v_t(p)}{VAC_t} \frac{N_t(p)}{N_t} V_t(p) + U_t \Phi_t^U \frac{v_t(p)}{VAC_t} + (1-\delta)N_t \Phi_t^N \frac{v_t(p)}{VAC_t} \frac{N_t(p)}{N_t} V_t(p) + U_t \Phi_t^U \frac{v_t(p)}{VAC_t} + (1-\delta)N_t \Phi_t^N \frac{v_t(p)}{VAC_t} \frac{N_t(p)}{N_t} V_t(p) + U_t \Phi_t^U \frac{v_t(p)}{VAC_t} + (1-\delta)N_t \Phi_t^N \frac{v_t(p)}{VAC_t} \frac{N_t(p)}{N_t} V_t(p) + U_t \Phi_t^U \frac{v_t(p)}{VAC_t} + (1-\delta)N_t \Phi_t^N \frac{v_t(p)}{VAC_t} \frac{N_t(p)}{N_t} V_t(p) + U_t \Phi_t^U \frac{v_t(p)}{VAC_t} + (1-\delta)N_t \Phi_t^N \frac{v_t(p)}{VAC_t} \frac{N_t(p)}{N_t} V_t(p) + U_t \Phi_t^U \frac{v_t(p)}{VAC_t} + (1-\delta)N_t \Phi_t^N \frac{v_t(p)}{VAC_t} \frac{v_t(p)}{N_t} V_t(p) + (1-\delta)N_t \Phi_t^N \frac{v_t(p)}{VAC_t} \frac{v_t(p)}{VAC_t} \frac{v_t(p)}{VAC_t} + (1-\delta)N_t \Phi_t^N \frac{v_t(p)}{VAC_t} \frac{v_t(p)$$

Probability of losing job or moving to a better firm New hires from pool of unemployed New hires from lower-p firms

•
$$\overline{VAC}_t(p) = \int_p^{\overline{p}} v_t(s)\gamma(s)ds$$

• Wage set to maximize

$$W_{t}(p) = \arg \max_{W_{t}(p)} (V_{t}^{N}(p) - V_{t}^{U})^{\xi} \left(V_{t}^{J}(p) - V_{t}^{V}(p) \right)^{1-\xi}$$

• Value of unemployment

$$V_t^U = b + \beta E_t \left(\Phi_t^U \int_{\underline{p}}^{\overline{p}} \frac{v_t(s)}{VAC_t} V_{t+1}^N(s) \gamma(s) ds + (1 - \Phi_t^U) V_{t+1}^U \right)$$

• Value of vacancy

$$V_t^V(p) = -\Xi(VAC_t(p)) + \beta E_t \left(\left(\Psi_t^U + \Psi_t^N \frac{N_t(p)}{N_t} \right) V_{t+1}^J(p) \right)$$

Vacancy cost needs to be convex!

Solution method

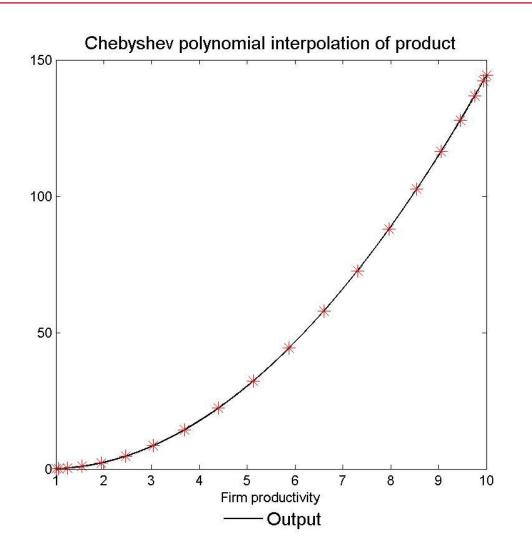
- Model is difficult to solve
 - We have several functions of productivity
 - We need to evaluate a number of nontrivial integrals
- We use Chebyshev polynomial approximation
 - We track values of functions in N points / nodes
- The method of evaluating integrals also works for dynamics

Approximation of functions of productivity

• For function f(p) approximation is:

$$P_N^f(p) = \sum_{n=1}^N b_n^f \times T_n(h(p))$$

- Where: b_n^{f} weights, T_n Cheb. Polynomials, and h(p) - linear transformation
- Inside the model we only need to know value of functions for nodes!



Solution method

- We need to calculate many integrals such as $VAC_t = \int_p^{\overline{p}} v_t(s)\gamma(s) ds$
- Using Chebyshev approximation:

$$\int_{-1}^{1} f(x)dx \approx \int_{-1}^{1} P_{N}^{f}(x) dx = \sum_{n=1}^{N} b_{n}^{f} \int_{-1}^{1} T_{n}(x)dx =$$
$$= \sum_{n=1}^{N} \frac{2}{N} \sum_{k=1}^{N} f(x_{k}) T_{n}(x_{k}) \int_{-1}^{1} T_{n}(x)dx$$

• Finally we have:

$$\int_{-1}^{1} f(x) dx \approx F_{1 \times N} \times W_{N \times N} \times T_{N \times 1}$$

Solution method

- If we need a more fancy integral, like: $\overline{V_t}(p) = \int_p^{\overline{p}} v_t(s) \gamma(s) ds$
- The modification the following:

$$\int_{a}^{1} f(x)dx \approx \int_{a}^{1} P_{N}^{f}(x) dx = \sum_{n=1}^{N} b_{n}^{f} \int_{a}^{1} T_{n}(x)dx =$$
$$= \sum_{n=1}^{N} \frac{2}{N} \sum_{k=1}^{N} f(x_{k}) T_{n}(x_{k}) \int_{a}^{1} T_{n}(x)dx$$

• Finally we have:

$$\int_{-1}^{1} f(x) dx \approx F_{1 \times N} \times W_{N \times N} \times T_{N \times 1}^{a}$$

• Calculating integrals boils down to scalar product of function values and parameters!

• Thanks to this we can calculate the steady state

• We can use standard methods to solve **dynamics** the model (Judd, Uhlig, or Dynare)

Results

Basic parameterization

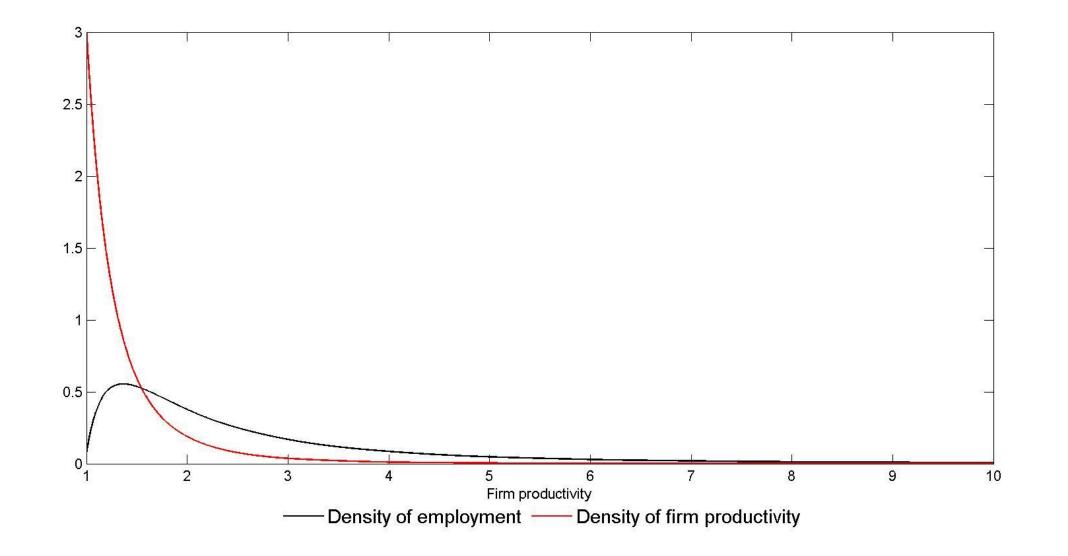
- Pareto distribution for productivity of firms
- Remaining parameters

parameter	interpretation	baseline value
β	discount factor	0.99
δ	job destruction rate	0.1
b	utility of unemployed	0
v	matching function efficiency	0.5
μ	match elasticity wrt job offers	0.5
ξ	bargaining power	0.5
ν^{α}	linear vacancy cost	0.01
$ u^{eta}$	quadratic vacancy cost	35
λ^e	search intensity of employed	0.1
λ^u	search intensity of unemployed	1

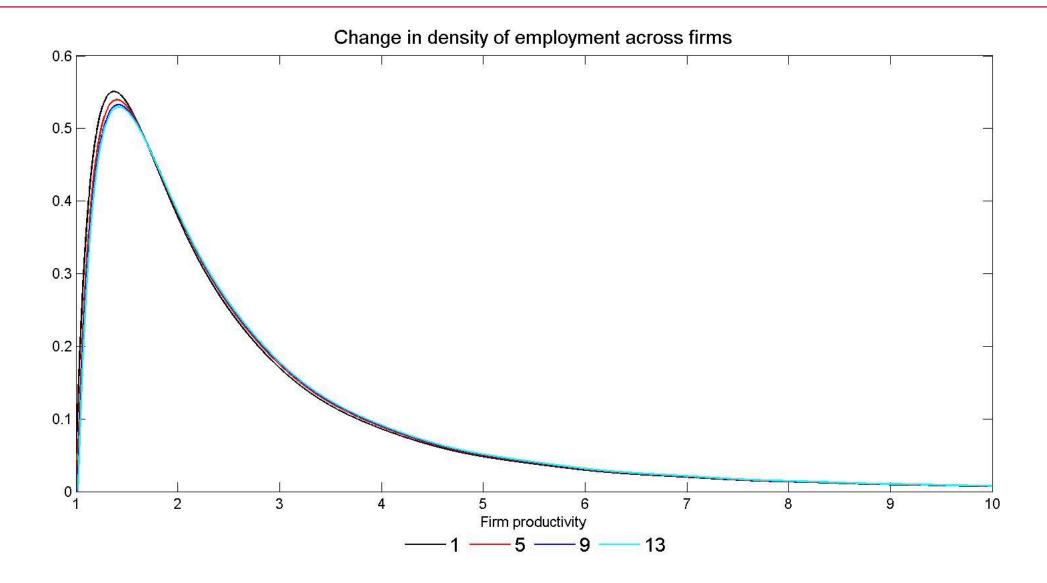
• Consistent with BM and MPV

• Average firms size increases with productivity

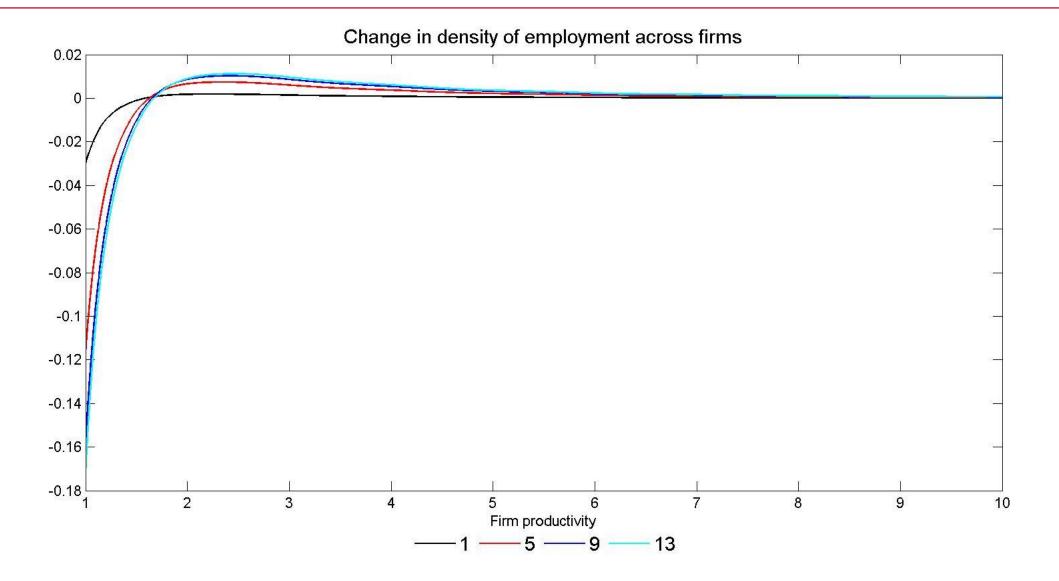
• Wage increases with productivity



Response of density function to technology shock



Response of density function to technology shock



Working capital

Working capital

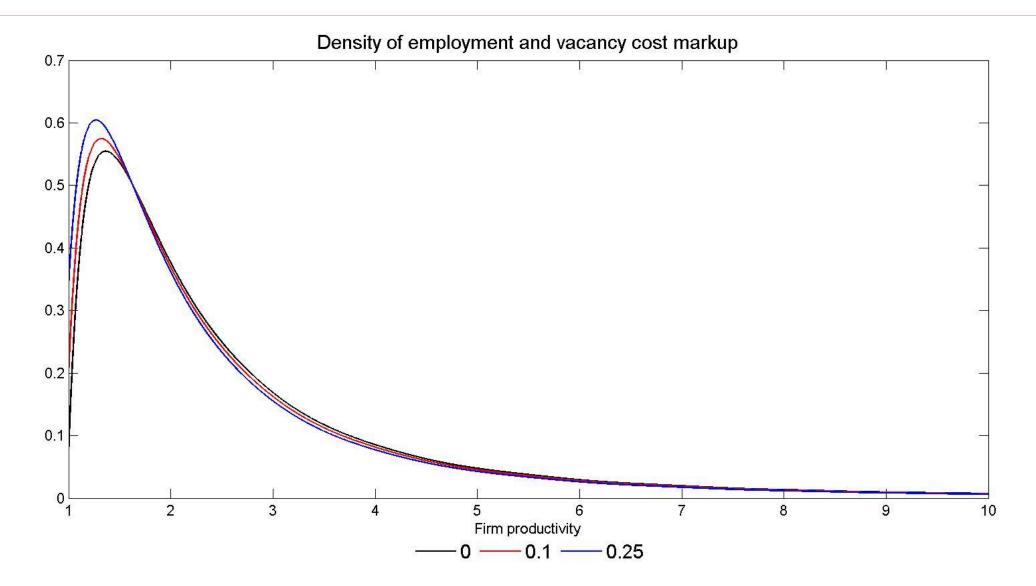
- We introduce working capital into the model
- Firms need to borrow to finance
 - Vacancy cost

$$V_t^V(p) = -\Xi(VAC_t(p))(1+r_k^c) + \beta E_t\left(\left(\Psi_t^U + \Psi_t^N \frac{N_t(p)}{N_t}\right) V_{t+1}^J(p)\right)$$

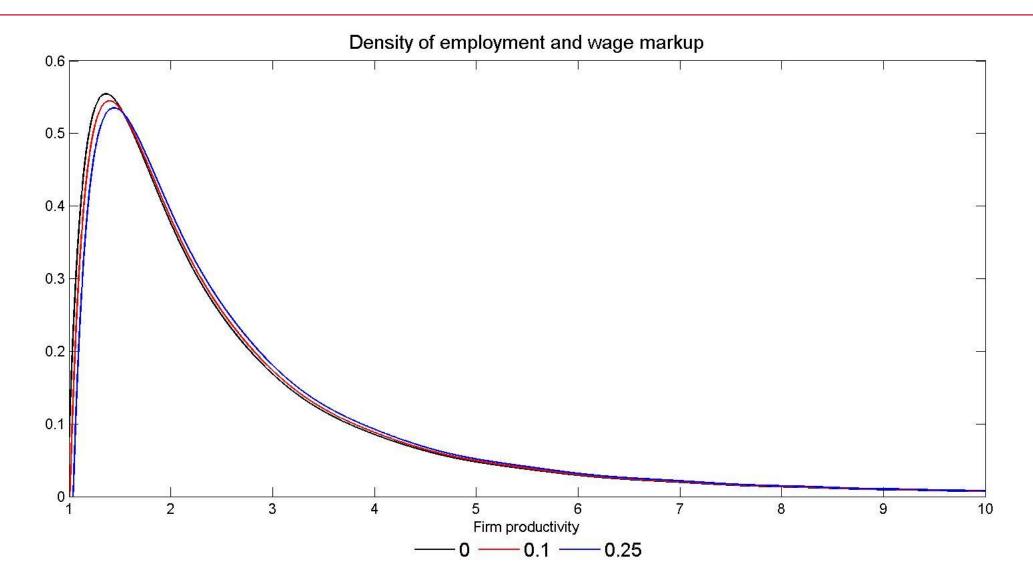
• Wage bill

$$V_t^J(p) = W_t(p)(1 + r_k^w) + \beta E_t\left((1 - \delta)\left(\frac{\Phi_t^N v_t(p)}{VAC_t}\int_p^{\overline{p}}...\right)\right)$$

Effect of vacancy cost markup



Effect of wage markup



Effect of working capital on new matches					

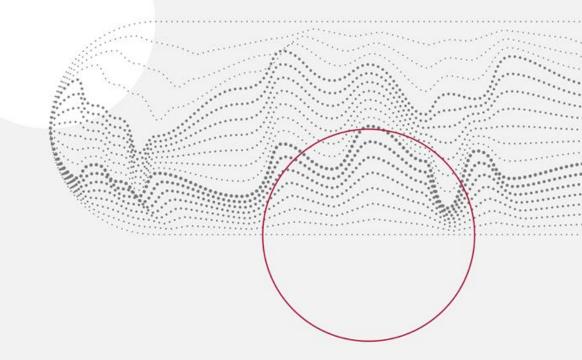
	vacancy markup	wage markup	both
Total	98.1%	95.4%	94.2%
Job to Job	95.0%	88.2%	85.4%
From Unempl	98.6%	96.5%	95.6%

Directions for future research

- For this model we need to
 - bring the model closer to the data
 - consider implications in the GE
 - study dynamics (IRFs) of variables and distributions
- Thanks to flexible setup the model can be easily expanded
 - adding other frictions (borrowing constraints)
 - adding capital
 - endogenizing search intensity by job seekers
- Solution method can be used for other models

Thank you for your attention!

marek.antosiewicz@ibs.org.pl Jacek.Suda@nbp.pl



What can we calibrate the model to?

- Distribution of employment across firms
- Distribution of firm size
- Distribution of wages
- Ratio of biggest and smallest firm size
- Ratio of biggest and smallest firm product
- Scale of OJS

