

Age or Time-To-Death:

What Drives Health Care Expenditures?

Maciej Lis

WIEM Conference, Warszawa, 06.2016

- rising share of HCEs in GDP in almost all countries
- high variation of HCEs share in GDP: 17% (USA), 9% (OECD average), 6%(Poland)
- HCEs financed to a great extent with public or private insurance

- rising share of HCEs in GDP in almost all countries
- high variation of HCEs share in GDP: 17% (USA), 9% (OECD average), 6%(Poland)
- HCEs financed to a great extent with public or private insurance

- rising share of HCEs in GDP in almost all countries
- high variation of HCEs share in GDP: 17% (USA), 9% (OECD average), 6%(Poland)
- HCEs financed to a great extent with public or private insurance

• income growth (income elasticities below 1)

- technological change in medicine (change of product)
- institutional settings (public spendings, insurance, cost control, health technology assessment)

- income growth (income elasticities below 1)
- technological change in medicine (change of product)
- institutional settings (public spendings, insurance, cost control, health technology assessment)

- income growth (income elasticities below 1)
- technological change in medicine (change of product)
- institutional settings (public spendings, insurance, cost control, health technology assessment)

- HCEs differ greatly among age groups: by a factor of 5-10 between ages 30 and 80
- population ageing accelerates globally (share of people 65+ will rise from 10% to 22% by 2050, Bloom et al. 2015)

- HCEs differ greatly among age groups: by a factor of 5-10 between ages 30 and 80
- population ageing accelerates globally (share of people 65+ will rise from 10% to 22% by 2050, Bloom et al. 2015)

Age distribution of HCEs in Poland

Source: Based on NFZ data.

Age distribution of HCEs in Poland

Source: Based on NFZ data.

- (harder) how will HCEs age profile evolve in the future?
- (easier) how did the HCEs age profile evolve in the past?

- (harder) how will HCEs age profile evolve in the future?
- (easier) how did the HCEs age profile evolve in the past?

Empirical approach I

$$H = \sum_{a} \sum_{t} h_{a,t} n_{a,t} \tag{1}$$

- H aggregate health care expenditures
- $a \in 5, 10, ..., 100$ is the index of age
- $t \in (0, 1, 2, ..., 10)$ is the index of years remaining to death
- *h*_{*a*,*t*} is average health care expenditures among individuals aged *a* who will die in *t* years
- $n_{a,t}$ is the size of the population group of age a and within t years of death.

Empirical approach II

$$H = h_1 \sum_{a < A} \sum_{t < T_g} (n_{a,t}) + h_2 \sum_{a < A} \sum_{t \ge T_g} (n_{a,t}) + h_3 \sum_{a \ge A} \sum_{t < T_l} (n_{a,t}) + h_4 \sum_{a \ge A} \sum_{t \ge T_l} (n_{a,t})$$
(2)

$$H = h_1 n_1 + h_2 n_2 + h_3 n_1 + h_4 n_1 \tag{3}$$

- younger than A and dying within T_g years,
- younger than A and living longer than T_g years,
- older than A and dying within T_l years,
- older than A and living longer than T_l years.

Empirical approach III

• the country and year indices

$$H^{c,y} = h_1^{c,y} n_1^{c,y} + h_2^{c,y} n_2^{c,y} + h_3^{c,y} n_1^{c,y} + h_4^{c,y} n_1^{c,y}$$
(4)

 constant (average) growth rate of part of HCEs, countries differ in terms of starting points

$$h_i^{c,y} = h_i^{c,y_0} (1 + \alpha_i)^{(y-y_0)}$$
(5)

• transformed into the difference form

$$\Delta H^{c,y} = \sum_{i=1}^{4} h_i^{c,y_0} (1+\alpha_i)^{(y-y_0)} \left(\Delta n_i^{c,y} + \alpha_i n_i^{c,y+1} \right) + \epsilon^{c,y}$$
(6)

Empirical approach IV

- . . .
- supplementary specification HCEs dependent on time-to-death, with functional relation time-to-death

Source: Lis M. (2015)

Empirical approach V

$$\begin{split} H^{c,y} &= \sum_{a} \left[\sum_{t < T_{b}} h_{a+t,0}^{c,y} (\beta^{c})^{t} n_{a,t}^{c,y} + \sum_{t \geq T_{b}} \gamma^{c,y} n_{a,t} \right] + \epsilon^{c,y} \\ h_{a+t,0}^{c,y} &= \eta_{1}^{c} \left[\tanh \left(\frac{(a+t) - \eta_{2}^{c}}{\eta_{3}^{c}} \right) - \tanh \left(\frac{(a+t) - \eta_{4}^{c}}{\eta_{5}^{c}} \right) \right] + \eta_{6}^{c} \\ \forall_{i \in 1, 2, 4, 6} : \eta_{i}^{c} &= (1 + \varphi_{i})^{(y-y_{0})} \kappa_{i}^{c,y_{0}} \\ \gamma^{c,y} &= (1 + \varphi_{\gamma})^{(y-y_{0})} \kappa_{\gamma}^{c,y_{0}} \\ \gamma^{c,y} &= \left(\frac{1 + \varphi_{\gamma}}{h_{a}^{c} + T_{b,0}} \right)^{\frac{1}{T_{b}}} \\ \beta^{c,y} &= \left(\frac{\gamma^{c,y}}{h_{a}^{c} + T_{b,0}} \right)^{\frac{1}{T_{b}}} \\ \gamma_{1}^{c,y} &> 0 \\ \eta_{6}^{c,y} &> 2\eta_{1}^{c,y} + \gamma^{c,y} \\ \epsilon^{c,y} &\sim \mathcal{N} \end{split}$$
(7)

• OECD data on aggregate (public and private) HCEs

- Human Mortality Database on age specific mortality and population structure
- unbalanced panel for 26 OECD countries, 18-40 observations per country, period 1970-2009

• OECD data on aggregate (public and private) HCEs

- Human Mortality Database on age specific mortality and population structure
- unbalanced panel for 26 OECD countries, 18-40 observations per country, period 1970-2009

- OECD data on aggregate (public and private) HCEs
- Human Mortality Database on age specific mortality and population structure
- unbalanced panel for 26 OECD countries, 18-40 observations per country, period 1970-2009

(age, ttd)	(10,3)	(10,10)	(50,3)	(50,10)	(90,3)	(90,10)	
α_1	0.12	0.291	0.193	0.133	0.026	0.036	
young close	(8.701)	(0.062)**	(0.026)**	(0.016)**	(2.151)	(0.336)	
α_2	0.04	0.025	0.022	0.018	0.033	0.033	
young distant	(0.072)	(0.018)	(0.009)*	(0.006)**	(0.009)**	(0.009)**	
$lpha_3$	0.025	0.026	0.06	0.013	0.098	0.149	
old close	(0.299	(0.024)	(0.017)**	(0.01)	(1.427)	(0.365)	
$lpha_4$	0.032	0.033	0.018	0	0.123	0.147	
old distant	(0.004)**	(0.006)**	(0.017)	(0.006)	(1.514)	(2.799)	
Standard errors in parenthesis, * p<.05, **p<.01							

age	e threshold	10	30	50	70	90	
α_1	younger	0.033	0.004	0.027	0.026	0.028	
		(0.008)**	(0.004)	(0.006)**	(0.006)**	(0.006)**	
α_2	older	0.024	0.014	0.008	0.018	0.021	
		(0.004)**	(0.004)**	(0.007)	(0.009)*	(0.009)	
Stand	Standard errors in parenthesis, * p<.05, **p<.01						

ttd t	threshold	0	1	3	5	10
α_1	closer	0.061	0.053	0.048	0.041	0.028
		(0.058)	(0.021)*	(0.012)**	(0.010)**	(0.007)**
α_2	further	0.024	0.024	0.021	0.016	0.021
		(0.005)**	(0.004)**	(0.004)**	(0.004)**	(0.004)**
Standard errors in parenthesis, * p<.05, **p<.01						

Functional specification of age and ttd

Source: Lis M. (2015)

. . :

exp rise before death	1	2	3	5	10
φ_1	0.046	0.012	0.019	0.036	0.008
steepness	(0.002)**	(0.005)*	(0.005)**	(0.002)**	(0.004)
$arphi_6$	0.046	0.049	0.042	0.036	0.026
ttd driven exp	(0.002)**	(0.004)**	(0.004)**	(0.002)**	(0.005)**
φ_{γ}	0.029	0.042	0.037	0.030	0.035
age driven exp	(0.001)**	(0.001)**	(0.000)**	(0.001)**	(0.001)**

- technological progress focused at health state with high mortality
- insurance mechanism slackens the budget constraint for those at very costly health state
- the 'additional' years of life are costly

- technological progress focused at health state with high mortality
- insurance mechanism slackens the budget constraint for those at very costly health state
- the 'additional' years of life are costly

- technological progress focused at health state with high mortality
- insurance mechanism slackens the budget constraint for those at very costly health state
- the 'additional' years of life are costly

maciej.lis@ibs.org.pl

