

The global distribution of routine and non-routine work. Findings from PIAAC, STEP & CULS

Piotr Lewandowski (IBS, IZA) Wojciech Hardy(IBS) Albert Park (IEMS HKUST) Du Yang (CASS)

The de-routinisation of jobs in the US and Western Europe has been attributed to the routine-biased technological progress

- Routine cognitive and manual tasks are substituted by technology and they decline
- Non-routine cognitive tasks complement technology and they grow
- Non-routine manual tasks are typical for lousy jobs, may grow or decline depending on the general equilibrium effects

Source: Autor, Price (2013)

Task contents are usually calculated with O*NET, a US database on occupational demands (Autor et al. 2003, Acemoglu & Autor 2011)

. . .

Task content measure	Task items used		
	Analysing data / information		
Non-routine cognitive analytical	Thinking creatively		
	Interpreting information for others		
	Establishing and maintaining personal relationships		
Non-routine cognitive interpersonal	Guiding, directing and motivating subordinates		
	Coaching/developing others		
	The importance of repeating the same tasks		
Routine cognitive	The importance of being exact or accurate		
	Structured vs. unstructured work		
	Pace determined by the speed of equipment		
Routine manual	Controlling machines and processes		
	Spending time making repetitive motions		
	Operating vehicles, mechanized devices, or equipment		
New weighting meaning which is a	Spending time using hands to handle, control or feel objects, tools or controls		
Non-routine manual physical	Manual dexterity		
	Spatial orientation		

Cross-country studies utilise O*NET assumming that it is a good proxy for occupational content outside of the US (occupations are identical)

- Handel (2012): high correlations between O*NET measures and results from country-specific skill surveys in some OECD countries
- Goos et al. (2014), Arias et al. (2014), Lewandowski et al. (2018): applications of O*NET to LFS data in the OECD and/or EU countries
- World Development Report 2016: the Autor (2015) typology of high-, middle-, and low-skill occupations in the US assigned to developing countries with bizzare results
- But are occupations really identical around the world?

The contribution of this paper

- Construct task content measures which:
 - Are measured at the worker level
 - Are country-specific
 - Are consistent with the established measures based on O*NET (US dataset)
 - Can be applied to PIAAC and STEP datasets
- Quantify differences in the task content of jobs around the world
- Identify factors which contribute to these differences

- De la Rica & Gortazar (2016), Marcolin et al. (2016) with PIAAC (OECD and partners)
- Dicarlo (2016) with STEP (10 developing countries)
- These papers are quite arbitrary in how they define tasks.

- De la Rica & Gortazar (2016), Marcolin et al. (2016) with PIAAC (OECD and partners)
- Dicarlo (2016) with STEP (10 developing countries)
- These papers are quite arbitrary in how they define tasks.
- Differences wrt O*NET tasks can result from different definitions (☺) or different country-specific work patterns (☺).
- We want to minimise the former and highlight the latter
- We use PIAAC (32 countries), STEP (9 countries) and CULS (China)

We use three surveys which include comparable data on the skill use at work, literacy and labour market status

PIAAC (OECD)	 32 countries surveyed between 2011 and 2015 sample sizes: from 4000 (Russia) to 26000 (Canada)
STEP (World Bank)	 9 countries surveyed between 2011 and 2015 sample sizes: from 2400 (Ukraine) to 4000 (Macedonia) urban residents representative for survey areas skill use at work and literacy test comparable to PIAAC
CULS (Chinese Academy of Social Science)	 6 cities (Guangzhou, Shanghai, Fuzhou, Shenyang, Xian, Wuhan) in 2016 sample size 15500 representative for the survey area skill use at work questionnaire as in STEP

Representativeness of the data is limited in some countries. Bear that in mind when looking at the results

PIAAC

- Belgium Flanders
- Russia without Moscow municipal area
- UK England and Northern Ireland
- Indonesia Jakarta
- Singapore only permanent residents (approx. 75% of population)

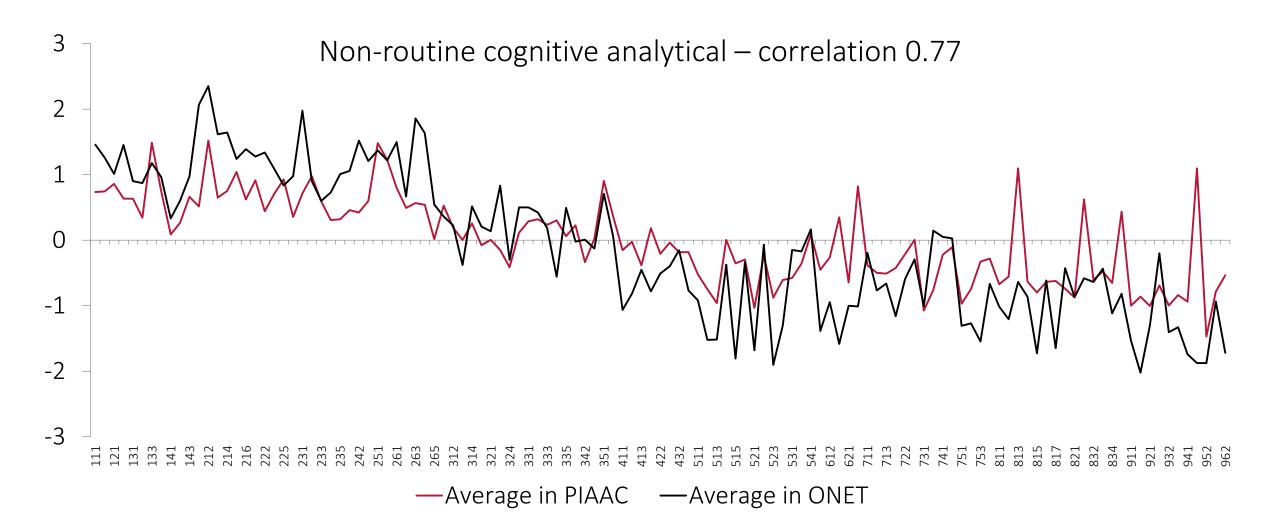
STEP – urban survey with additional limitations in some countries

- Bolivia four main cities La Paz, El Alto, Cochabamba and Santa Cruz de la Sierra (approx. 80% of urban population)
- Colombia 13 main metropolitan areas
- Georgia without Abkhazia and South Ossetia
- Lao PDR both urban and rural, but we drop rural for consistency
- China (CULS) 6 cities

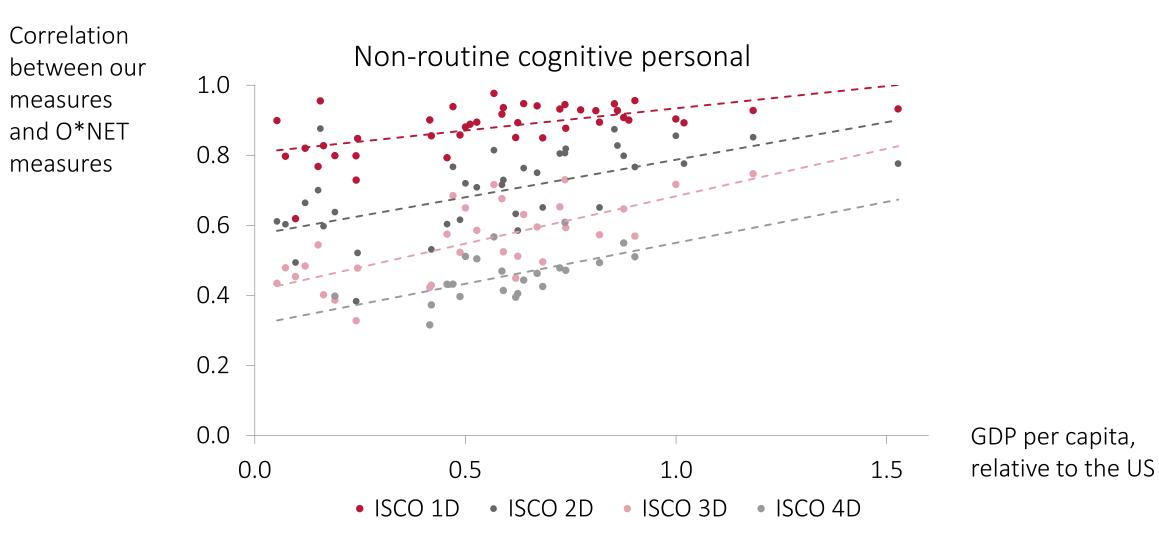
We construct and validate our task measures on the US PIAAC and O*NET data, and then we apply these measures to other countries

Identify task items included in both PIAAC and STEP, group them into four categories (non-routine cognitive analytical and personal, routine cognitive, manual)

Merge O*NET with the US PIAAC , calculate the Autor & Acemoglu (2011) task contents


Apply Autor & Acemoglu (2011) method to PIAAC items and find combinations that result in task contents highly correlated with the O*NET tasks at the occupation level in the US PIAAC

Choose the best combination for every task measure and apply them to all countries (0=US average, 1-US std)


We select the PIAAC / STEP items below and follow Autor & Acemoglu (2011) to calculate the values of tasks

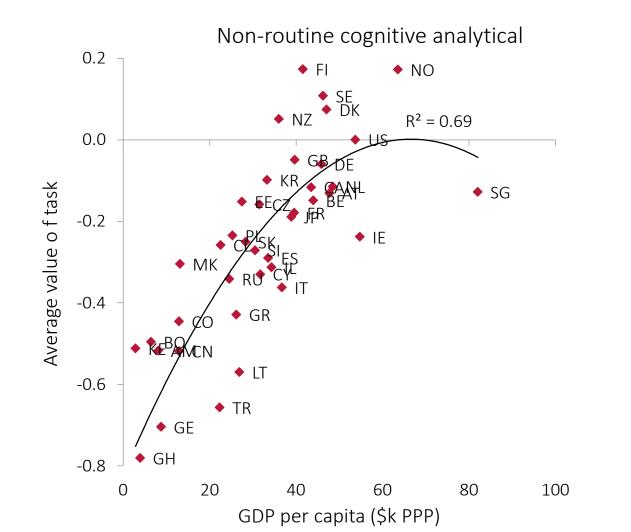
Task content measure	No. of item / cut-off combinations	Chosen PIAAC / STEP task items	
Non-routine cognitive analytical		Reading news	
	150 250	Reading professional titles	
	156 250	Solving problems	
		Programming	
Non-routine cognitive	2.4	Supervising	
interpersonal	24	Presenting	
		Changing order of tasks (reversed)	
Routine cognitive	5 000	Filling forms	
		Presenting (reversed)	
Manual	1	Physical tasks	
		,	

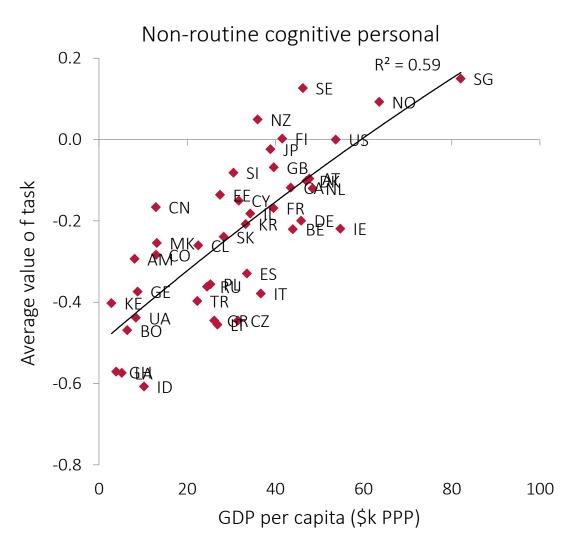
At the 3-digit occupation level in the US, the correlations between our measures and O*NET measures range from 0.55 to 0.77

The higher is the GPD per capita, the higher are the correlations between our tasks and the O*NET tasks at the occupation level

Once we control for GDP and literacy scores, the difference between PIAAC and STEP datasets becomes small and insignificant

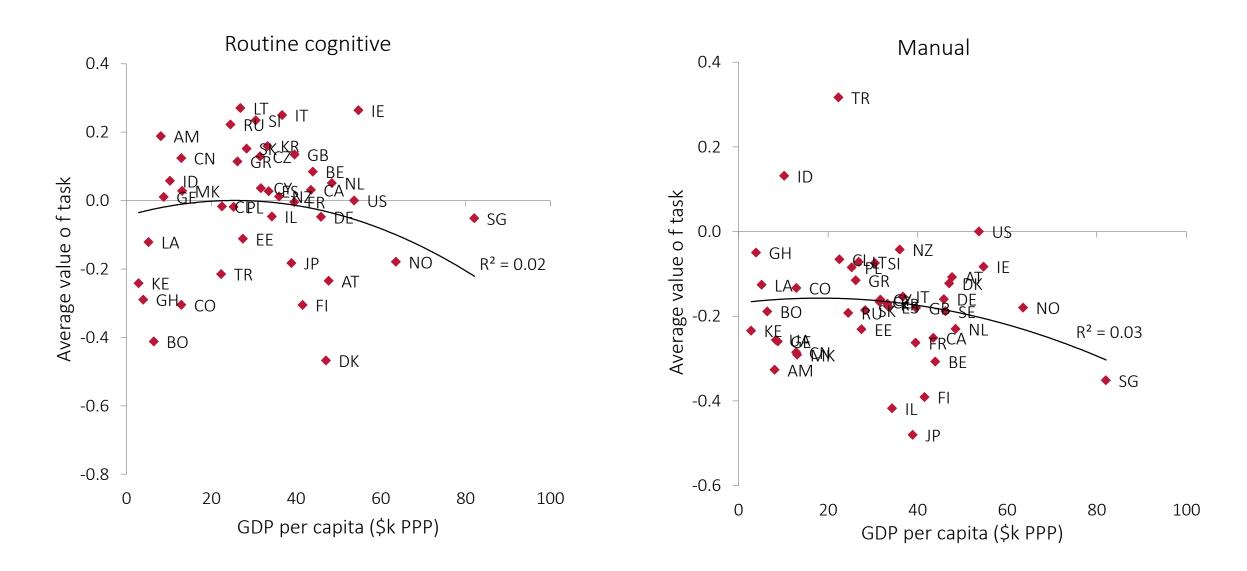
	Non-routine cognitive analytical	Non-routine cognitive personal	Routine cognitive	Manual
Base model (I)	-0.22***	-0.03	-0.05	-0.38***
I+ literacy skills (II)	-0.11	-0.04	-0.20	-0.44***
II + GDP	-0.00	0.06	-0.07	-0.18***


The reported coefficients are for a STEP dummy in a whole sample models. The base regressions include dummies for gender, 10-year age groups, education, 1-digit occupations and sectors. The standard errors are clustered at a country level. The regressions with literacy scores exclude China (CULS), Laos and Macedonia due to lack of literacy skills assessment in these countries.



There is no unit of a task so we relate all countries to the US distribution:

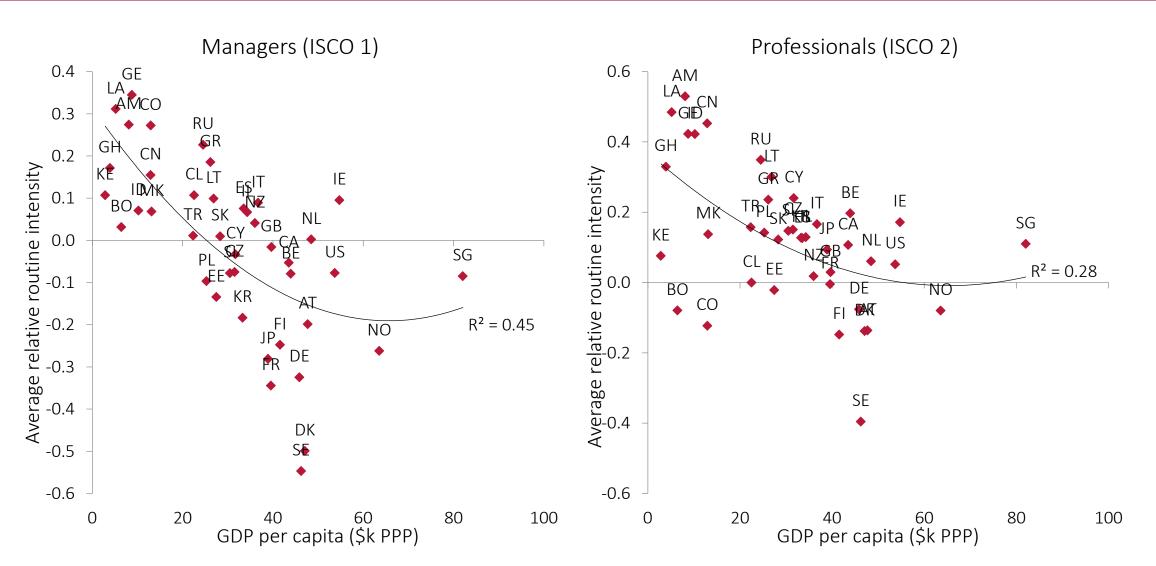
- 0 is the average level of a given task in the US
- 1 is equivalent to the standard deviation of a given task in the US


The more developed countries exhibit higher average values of non-routine tasks than the less developed countries

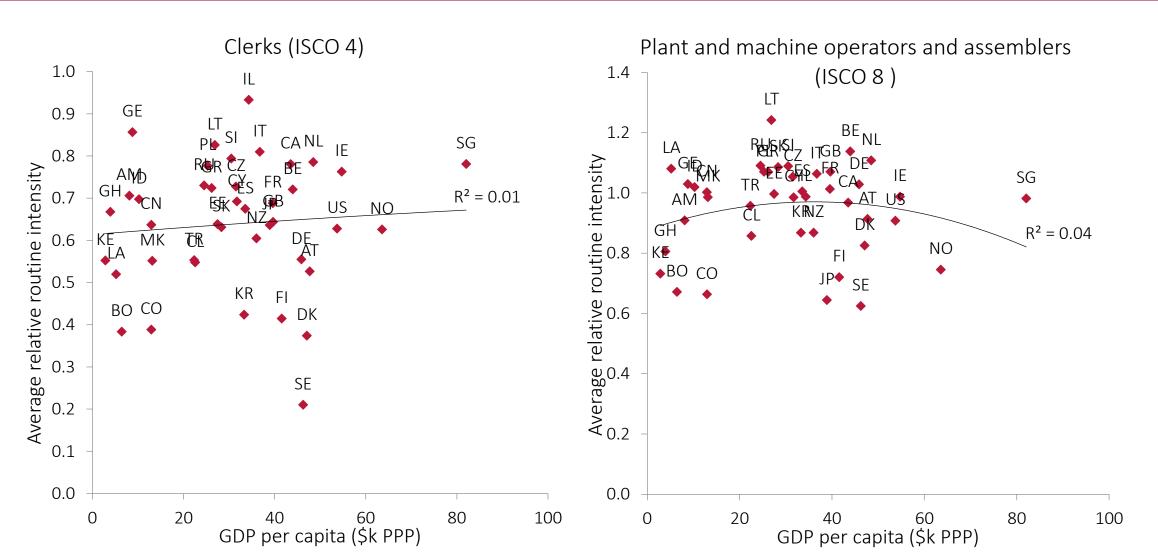
. . .

The relationship of routine cognitive and manual tasks with GDP per capita is inverse U-shaped but not significant

From now on I will use the relative routine task intensity (RTI)


Routine task intensity (RTI) increases with the relative importance of routine tasks, decreases with the relative importance of non-routine tasks

$$RTI = \ln(r_{cog}) - \ln\left(\frac{nr_{analytical} + nr_{personal}}{2}\right)$$


RTI allows

- Comparing occupations across countries
- Identifying individual-, sector-, and country-level correlates of routine intensity

We find noticeable differences of the task content of the high-skilled occupations in the less and more developed countries

But cross-country differences in middle- and low-skilled occupations are not systematicaly related to the development level

. |

We estimate worker-level models of routine task intensity (RTI) accounting for individual and country-sector level factors

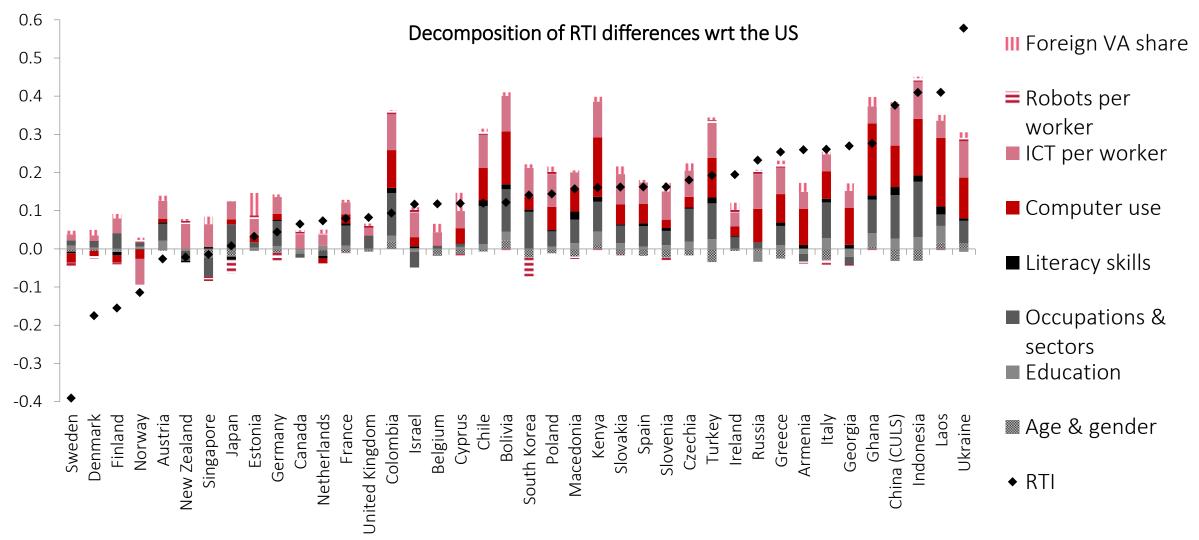
	M1	M2	M3	M4
Primary education	0.20***	0.10***		
Tertiary education	-0.37***	-0.13***		
Literacy skills level: up to 1				
Literacy skills level: 3				
Literacy skills level: 4 and 5				
Computer use (worker)				
ICT stock per worker (country)				
Robots per worker (sector)				
Foreign VA share (sector)				
Occupation and sector controls	No	Yes		
No. of obs. / R^2	157,806 / 0.14	156,151 / 0.29		

Pooled OLS regressions. All regressions include dummies for gender, 10-year age groups. The standard errors are clustered at a country level.

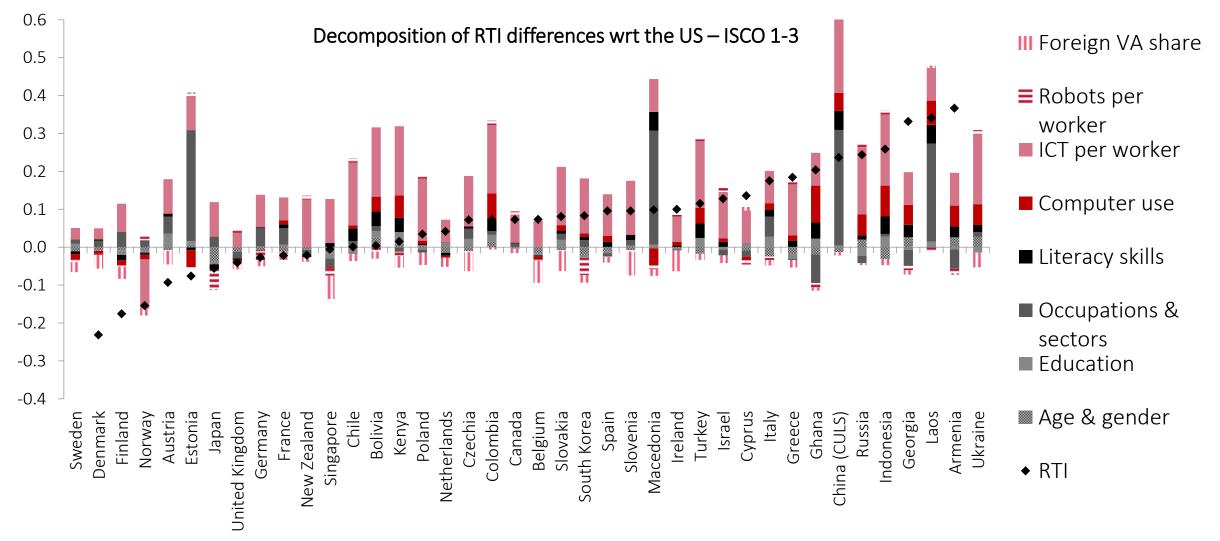
Once we control for literacy skills and computer use the difference between primary and secondary educated workers turns insignificant

M1	M2	M3	M4
0.20***	0.10***	0.01	
-0.37***	-0.13***	-0.08***	
		-0.01	
		-0.03***	
		-0.09***	
		-0.31***	
No	Yes	Yes	
157,806 / 0.14	156,151 / 0.29	143,970 / 0.33	
	0.20*** -0.37*** 	0.20*** 0.10*** -0.37*** -0.13***	0.20*** 0.10*** 0.01 -0.37*** -0.13*** -0.08*** -0.01 -0.03*** -0.09*** -0.31***

Pooled OLS regressions. All regressions include dummies for gender, 10-year age groups. The standard errors are clustered at a country level.

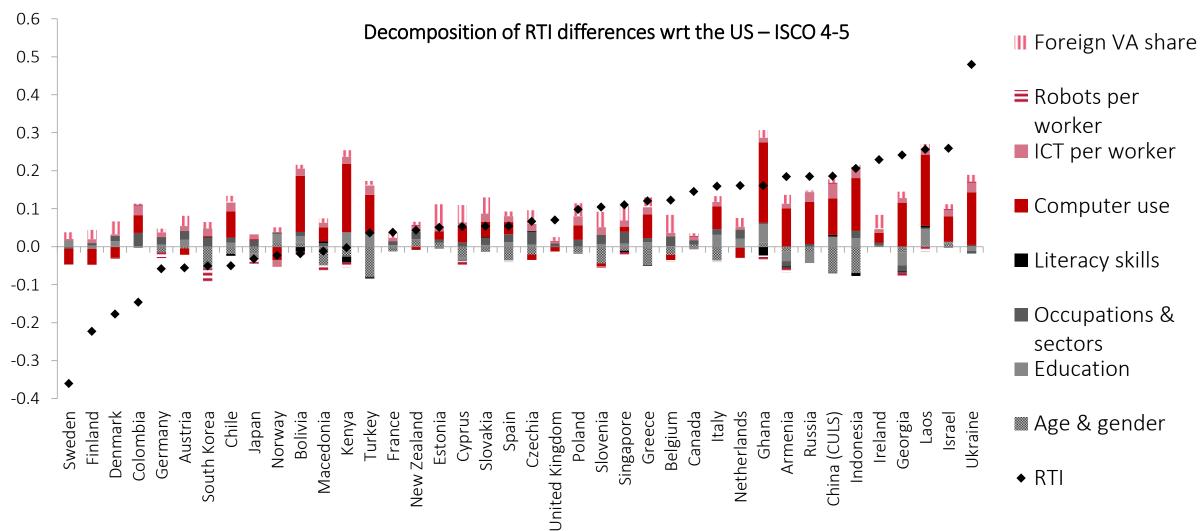

ICT capital stock per worker (country level Eden, Gaggl 2015 data) and robots per worker (by sector, IFR) are negatively related to RTI

. . :

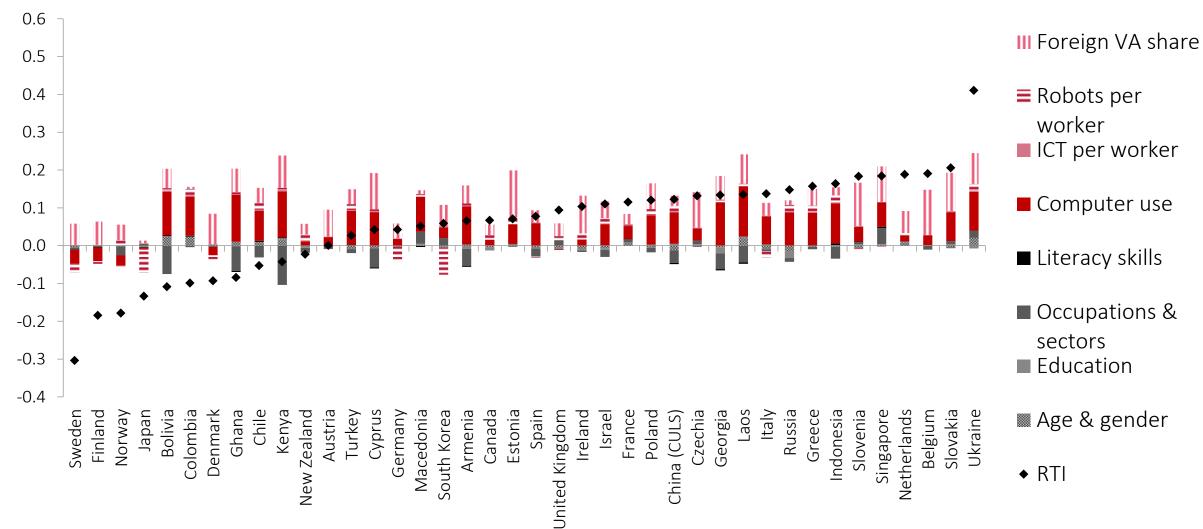

	M1	M2	M3	M4
Primary education	0.20***	0.10***	0.01	0.01
Tertiary education	-0.37***	-0.13***	-0.08***	-0.10***
Literacy skills level: up to 1			-0.01	-0.00
Literacy skills level: 3			-0.03***	-0.02**
Literacy skills level: 4 and 5			-0.09***	-0.08***
Computer use (worker)			-0.31***	-0.29***
ICT stock per worker (country)				-0.04*
Robots per worker (sector)				-0.04***
Foreign VA share (sector)				0.01
Occupation and sector controls	No	Yes	Yes	Yes
No. of obs. / R^2	157,806 / 0.14	156,151/0.29	143,970 / 0.33	124,418 / 0.34

Pooled OLS regressions. All regressions include dummies for gender, 10-year age groups. The standard errors are clustered at a country level.

Differences in occupational structures, computer use and ICT stock per worker contribute the most to cross-country differences in RTI



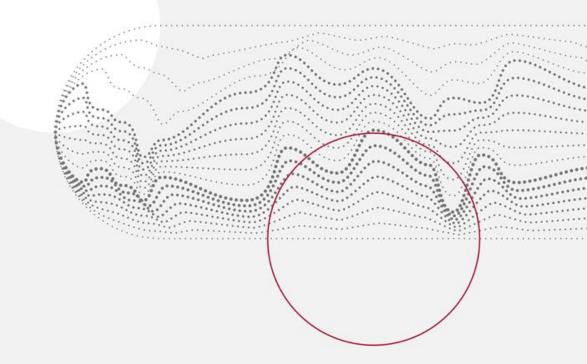
Among the high-skilled workers, a large chunk of differences can be attributed to the differences in the ICT capital stock per worker



Among the middle-skilled workers, the largest share can be attributed to differences in the individual computer use

. . .

Among the low-skilled workers, individual computer use and FVA shares contribute the most, while ICT capital stock doesn't matter



What tasks tell us about the global division of work

- We create task content measures which:
 - are worker-based and country-specific
 - but correspond with the established O*NET task content measures
- Occupations are indeed different around the world
 - Non-routine work is more common in the most advanced countries, especially among high-skilled
 - Routine cognitive work has an inverse-U shape relationship with GDP per capita
- Cross-country differences in routine intensity of jobs can be atrributed to:
 - Partly to differences in education, skills and employment structures
 - Notably to differences in computer use and ICT capital stock

- Thanks for listening
- Piotr Lewandowski piotr.lewandowski@ibs.org.pl www.ibs.org.pl @ibs_warsaw

