

The global distribution of routine and non-routine work. Findings from PIAAC, STEP & CULS

Piotr Lewandowski (IBS, IZA) Wojciech Hardy(IBS) Albert Park (IEMS HKUST) Du Yang (CASS)

The de-routinisation of jobs in the US and Western Europe has been attributed to the routine-biased technological progress

- Routine cognitive and manual tasks are substituted by technology and decline
- Non-routine cognitive tasks complement technology and grow
- Non-routine manual tasks rebounded but are typical for lousy jobs

Source: Autor, Price (2013)

Task contents are usually calculated with O*NET, a US database on occupational demands (Autor et al. 2003, Acemoglu & Autor 2011)

. . .

Task content measure	Task items used		
	Analysing data / information		
Non-routine cognitive analytical	Thinking creatively		
	Interpreting information for others		
	Establishing and maintaining personal relationships		
Non-routine cognitive interpersonal	Guiding, directing and motivating subordinates		
	Coaching/developing others		
Routine cognitive	The importance of repeating the same tasks		
	The importance of being exact or accurate		
	Structured vs. unstructured work		
	Pace determined by the speed of equipment		
Routine manual	Controlling machines and processes		
	Spending time making repetitive motions		
Non-routine manual physical	Operating vehicles, mechanized devices, or equipment		
	Spending time using hands to handle, control or feel objects, tools or controls		
	Manual dexterity		
	Spatial orientation		

Cross-country studies utilise O*NET assumming that it is a good proxy for occupational content outside of the US (occupations are identical)

- Handel (2012): high correlations between O*NET measures and results from country-specific skill surveys in some OECD countries
- Goos et al. (2014), Arias et al. (2014), Lewandowski et al. (2016, 2017): applications of O*NET to LFS data in the OECD and/or EU countries
- WDR (2016): the Autor (2015) typology of high-, middle-, and low-skill occupations in the US is assigned to developing countries

The aim of this paper

- Construct task content measures which:
 - Are measured at the worker level
 - Are country-specific
 - Are consistent with the established measures based on O*NET (US dataset)
 - Can be applied to PIAAC and STEP datasets
- Quantify differences in the task content of jobs around the world
- Identify factors which contribute to these differences

- De la Rica & Gortazar (2016), Marcolin et al. (2016) with PIAAC (OECD and partners)
- Dicarlo (2016) with STEP (10 developing countries)
- These papers are quite arbitrary in how they define tasks.

- De la Rica & Gortazar (2016), Marcolin et al. (2016) with PIAAC (OECD and partners)
- Dicarlo (2016) with STEP (10 developing countries)
- These papers are quite arbitrary in how they define tasks.
- Differences wrt O*NET tasks can result from different definitions (☺) or different country-specific work patterns (☺).
- We want to minimise the former and highlight the latter
- We use PIAAC (32 countries), STEP (9 countries) and CULS (China)

We use three surveys which include comparable data on the skill use at work, literacy and labour market status

PIAAC (OECD)	 32 countries surveyed between 2011 and 2015 sample sizes: from 4000 (Russia) to 26000 (Canada)
STEP (World Bank)	 9 countries surveyed between 2011 and 2015 sample sizes: from 2400 (Ukraine) to 4000 (Macedonia) urban residents representative for survey areas skill use at work and literacy test comparable to PIAAC
CULS (Chinese Academy of Social Science)	 6 cities (Guangzhou, Shanghai, Fuzhou, Shenyang, Xian, Wuhan) in 2016 sample size 15500 representative for the survey area skill use at work questionnaire as in STEP

Representativeness of the data is limited in some countries. Bear that in mind when looking at the results

PIAAC

- Belgium Flanders
- Russia without Moscow municipal area
- UK England and Northern Ireland
- Indonesia Jakarta
- Singapore only permanent residents (approx. 75% of population)

STEP – urban survey with additional limitations in some countries

- Bolivia four main cities La Paz, El Alto, Cochabamba and Santa Cruz de la Sierra (approx. 80% of urban population)
- Colombia 13 main metropolitan areas
- Georgia without Abkhazia and South Ossetia
- Lao PDR both urban and rural, but we drop rural for consistency
- China (CULS) 6 cities

We use the US PIAAC to construct task measures which are consistent with O*NET but are calculated at a worker level and are country-specific

Identify task items which are included in both PIAAC and STEP

Group them into four categories (non-routine cognitive analytical and personal, routine cognitive, manual)

Calculate O*NET task contents (Autor & Acemoglu, 2011) on the US PIAAC

Find combinations of items which are highly correlated with O*NET tasks at the occupation level in the US PIAAC

Choose the best combinations for every task measure and apply them to all countries

We select the PIAAC / STEP items below and follow Autor & Acemoglu (2011) to calculate the values of tasks

At the 3-digit occupation level in the US, the correlations between our measures and O*NET measures range from 0.55 to 0.77

The higher is the GPD per capita, the higher are the correlations between our tasks and the O*NET tasks at the occupation level

Once we control for GDP and literacy scores, the difference between PIAAC and STEP datasets becomes small and insignificant

	Non-routine cognitive analytical	Non-routine cognitive personal	Routine cognitive	Manual
Base model (I)	-0.22***	-0.03	-0.05	-0.38***
I+ literacy skills (II)	-0.10	-0.04	-0.20	-0.44***
ll + GDP	-0.00	0.06	-0.07	-0.18***

The reported coefficients are for a STEP dummy in a whole sample models. The base regressions include dummies for gender, 10-year age groups, education, 1-digit occupations and sectors. The standard errors are clustered at a country level. The regressions with literacy scores exclude China (CULS), Laos and Macedonia due to lack of literacy skills assessment in these countries.

■ PIAAC-STEP ■ O*NET

■ PIAAC-STEP ■ O*NET

■ PIAAC-STEP ■ O*NET

The more developed countries exhibit higher average values of non-routine tasks than the less developed countries

The relationship of routine cognitive and manual tasks with GDP per capita is inverse U-shaped but not significant

To quantify the distribution of routine and non-routine workers we define the relative routine task intensity (RTI)

- . . .
- Routine task intensity (RTI)
 → with the relative importance of routine tasks,
 with the relative importance of non-routine tasks

$$RTI = \ln(r_{cog}) - \ln\left(\frac{nr_{analytical} + nr_{personal}}{2}\right)$$

- The pooled distribution of relative routine intensity provides:
 - Non-routine workers 20% of individuals with the lowest RTI
 - Routine workers 20% of individuals with the highest RTI

The more advanced countries exhibit abundance of non-routine workers. The middle to high income countries exhibit abundance of routine workers

We estimate worker-level models of routine task intensity (RTI). Routine intensity is significantly higher for workers who are

- Women
- Young
- Without college or without secondary education
- In the low-skilled occupations (the craft and related trades workers, plant and machine operators and assemblers or elementary occupations)
- In wholesale and retail trade, repair of motor vehicles and motorcycles, transportation and storage or accomodation and food service activities
- Who don't use computer at work
- Who have low literacy skills

In most countries, workforce and workplace characteristics contribute to higher routine intensity of jobs than in the US

■ Endowments ■ Coefficients (without the constant) ■ Interactions ■ Constant coefficient (unexplained) • Total difference

In most countries, the structure of job characteristics (occupations and sectors) and computer use at work raise routine intensity above the US

But more education, better skills, and computer use reduce the routine intensity to a higher extent than in the US

What tasks tell us about the global division of work

- We create task content measures which:
 - are worker-based and country-specific
 - but correspond with the established O*NET task content measures
- Occupations are indeed different around the world
- Non-routine work is more common in the most advanced countries
- Routine cognitive work has an inverse-U shape relationship with GDP per capita
- About a half of cross-country differences in routine intensity of jobs can be explained by differences in education, skills and employment structures

- Thanks for listening
- Piotr Lewandowski piotr.lewandowski@ibs.org.pl www.ibs.org.pl @ibs_warsaw

