Firm Dynamics with Frictional Product and Labor Markets

Leo Kaas Bihemo Kimasa

University of Konstanz
Workshop "New developments in labor markets", IBS Warsaw November 16, 2015

Work in progress

Motivation

- Firm dynamics and heterogeneity is central for the labor market and for aggregate outcomes (hires, separations, wages, productivity, ...).
- Much of the theoretical and quantitative literature considers shocks to revenue productivity to account for firm dynamics
(e.g. Hopenhayn \& Rogerson 1993, Cooper, Haltiwanger \& Willis 2007, Veracierto 2007, Elsby \& Michaels 2013,...)

Motivation

- Firm dynamics and heterogeneity is central for the labor market and for aggregate outcomes (hires, separations, wages, productivity, ...).
- Much of the theoretical and quantitative literature considers shocks to revenue productivity to account for firm dynamics
(e.g. Hopenhayn \& Rogerson 1993, Cooper, Haltiwanger \& Willis 2007, Veracierto 2007, Elsby \& Michaels 2013,...)
- But supply and demand shocks affect firms differently.
- Foster, Haltiwanger and Syverson (2008, 2012):
- Demand is important for firm growth (more than productivity)
- Price dispersion: younger firms are more demand constrained and charge lower prices.

Research Question

What are the respective roles of demand and productivity for the firm-level dynamics of prices, output, employment and wages?

This paper

- Document the joint dynamics of prices, output, employment, working hours and wages for German manufacturing firms.
- Document patterns of price, labor productivity (and wage) dispersion.

This paper

- Document the joint dynamics of prices, output, employment, working hours and wages for German manufacturing firms.
- Document patterns of price, labor productivity (and wage) dispersion.
- Develop an equilibrium model of firm dynamics with
- product and labor market frictions
- costly recruitment and sales, wage and price dispersion
- separate roles for demand and supply shocks
- Quantitative evaluation, counterfactual experiments (in progress)

Literature

Price and productivity dispersion
Abbott 1992, Foster, Haltiwanger \& Syverson 2008, 2012, Smeets \& Warzynski 2013, Kugler \& Verhoogen 2012

Firm-level price and employment dynamics
Carlson \& Skans 2012, Carlson, Messina \& Skans 2014
Firm dynamics with labor market frictions
Smith 1999, Veracierto 2007, Elsby \& Michaels 2013, Acemoglu \&
Hawkins 2014, Kaas \& Kircher 2015
Firm dynamics with product market frictions
Gourio \& Rudanko 2014

Data (I)

- Administrative Firm Data (AFiD) of the German Federal Statistical Office.
- All establishments in manufacturing (\& mining, quarrying) with ≥ 20 employees
- 1995-2014 (annual). (So far, we work with 2005-2007)
- Sales value and quantity for nine-digit product categories
- Employment, working hours, wages
- Detailed worker information (matched employer-employee) for subsample of establishments in 1996, 2001, 2006, 2010, 2014.

Data (II)

- Consider one-establishment firms.
- Two samples of goods: © Examples
- Full: All goods with quantity info \Rightarrow Firm dynamics
- Homogeneous: Those measured in length, area, volume, or weight; drop goods produced by less than 6 firms \Rightarrow Price \& productivity dispersion

Data (II)

- Consider one-establishment firms.
- Two samples of goods: Examples
- Full: All goods with quantity info \Rightarrow Firm dynamics
- Homogeneous: Those measured in length, area, volume, or weight; drop goods produced by less than 6 firms \Rightarrow Price \& productivity dispersion
- Drop firm observations where sample sales value is less than 50 percent of total sales:
- Full sample: 61,034 firm-years, 13,177 product-years
- Homogeneous sample: 38,651 firm-years, 3,730 product-years

Price and productivity dispersion

- $\bar{P}_{j t}$ quantity-weighted mean price of good j in year t.
- Firm i's relative price:

$$
\widetilde{P}_{i t}=\frac{\sum_{j} P_{j i t} Q_{j i t}}{\sum_{j} \bar{P}_{j t} Q_{j i t}}
$$

Price and productivity dispersion

- $\bar{P}_{j t}$ quantity-weighted mean price of good j in year t.
- Firm i's relative price:

$$
\widetilde{P}_{i t}=\frac{\sum_{j} P_{j i t} Q_{j i t}}{\sum_{j} \bar{P}_{j t} Q_{j i t}}
$$

- Revenue and quantity labor productivity (per hour):

$$
R L P_{i t}=\frac{\sum_{j} Q_{j i t} P_{j i t}}{H_{i t}} \quad, \quad Q L P_{i t}=\frac{\sum_{j} Q_{j i t} \bar{P}_{j t}}{H_{i t}}
$$

$$
R L P_{i t}=\widetilde{P}_{i t} \cdot Q L P_{i t}
$$

Revenue and quantity productivity, and prices

RLP

QLP

$\widetilde{\mathrm{P}}$

Correlations and standard deviations

Correlations	RLP	QLP	\widetilde{P}	Empl.	wage/hour
RLP	1				
QLP	0.775	1			
\widetilde{P}	-0.108	-0.712	1		
Empl	0.293	0.229	-0.035	1	
wage/h.	0.558	0.383	0.017	0.308	1
Std.dev.	0.697	0.986	0.629	0.871	0.374

Firm dynamics

- Measure firm i's output growth:

$$
\frac{Q_{i, t+1}}{Q_{i, t}}=\frac{\sum_{j} P_{j i t} Q_{j i, t+1}}{\sum_{j} P_{j i t} Q_{j i t}}
$$

- Log revenue growth is split into log output growth and log growth of the firm's Paasche price index:

$$
\widehat{R}_{i, t}=\widehat{Q}_{i, t}+\widehat{P}_{i, t} .
$$

- Further consider log growth rates of employment, hours, wages, revenue and quantity productivity.

Firm growth rates

Correlations and standard deviations

Correlations	$\widehat{P Q}$	\widehat{Q}	\widehat{P}	\widehat{E}	w / h
$\widehat{P Q}$	1				
\widehat{Q}	0.795	1			
\widehat{P}	0.284	-0.356	1		
\widehat{E}	0.307	0.276	0.035	1	
$\widehat{w / h}$	-0.009	-0.014	0.009	-0.013	1
Std.dev.	0.172	0.176	0.109	0.087	0.100

All variables are \log growth rates.
Variance decomposition: \widehat{P} accounts for 18% of revenue growth and 16% of the growth of hourly labor productivity.

Nonlinear relations between \widehat{P}, \widehat{Q} and \widehat{E}

The model

- Canonical model of firm dynamics with trading frictions in product and labor markets.
- Risk-neutral representative household with \bar{L} worker members and \bar{B} shopper members.
- A worker member supplies one unit of labor per period.
- A shopper member can buy one unit of a good per period.
- Household's preferences are

$$
\sum_{t \geq 0} \beta^{t}\left[e_{t}+\int y_{t}(f) c_{t}(f) d \mu_{t}(f)\right]
$$

e_{t} consumption of a numeraire good, $y_{t}(f)$ firm-specific demand state (e.g. product quality), $c_{t}(f)$ consumption of firm f 's output.

Firms

- Consider a firm with L workers and B customers.
- Output $x F(L)$ with $F^{\prime}>0, F^{\prime \prime} \leq 0 . x$ is firm-specific productivity.
- The firm sells $B \leq x F(L)$ units of output. (Waste if inequality is strict).
- $z=(x, y)$ follows a Markov process.
- Any firm's policy depends on the shock history z^{a} where a is firm age (stationary equilibrium).

Firms

- Consider a firm with L workers and B customers.
- Output $x F(L)$ with $F^{\prime}>0, F^{\prime \prime} \leq 0 . x$ is firm-specific productivity.
- The firm sells $B \leq x F(L)$ units of output. (Waste if inequality is strict).
- $z=(x, y)$ follows a Markov process.
- Any firm's policy depends on the shock history z^{a} where a is firm age (stationary equilibrium).
- Recruitment and sales activities are costly. With recruitment effort R and sales effort S, costs are $r(R, L)$ and $s(S, L)$.
- Costs are increasing \& convex in effort and possibly declining in size (scale effects).

Search and matching

- Firms offer long-term wage contracts to new hires and price discounts (initial period) to new customers.
- Search is directed: Unemployed workers and unmatched shoppers search in submarkets that differ by their matching rates and match values.

Search and matching

- Firms offer long-term wage contracts to new hires and price discounts (initial period) to new customers.
- Search is directed: Unemployed workers and unmatched shoppers search in submarkets that differ by their matching rates and match values.
- Firm hires $m(\lambda) R$ where λ are unemployed workers per unit of recruitment effort in the submarket $\left(m^{\prime}>0, m^{\prime \prime}<0\right)$.
- Firm attracts $q(\varphi) S$ new custormers where φ are unmatched shoppers per unit of sales effort in the submarket $\left(q^{\prime}>0\right.$, $q^{\prime \prime}<0$).

Search and matching

- Firms offer long-term wage contracts to new hires and price discounts (initial period) to new customers.
- Search is directed: Unemployed workers and unmatched shoppers search in submarkets that differ by their matching rates and match values.
- Firm hires $m(\lambda) R$ where λ are unemployed workers per unit of recruitment effort in the submarket $\left(m^{\prime}>0, m^{\prime \prime}<0\right)$.
- Firm attracts $q(\varphi) S$ new custormers where φ are unmatched shoppers per unit of sales effort in the submarket $\left(q^{\prime}>0\right.$, $q^{\prime \prime}<0$).
- Matching rate for workers: $m(\lambda) / \lambda$.
- Matching rate for shoppers: $q(\varphi) / \varphi$.

Separations, entry and exit

- New firms enter at cost K, draw initial state (x, z), $\left(L_{0}, B_{0}\right)=(0,0)$.

Separations, entry and exit

- New firms enter at cost K, draw initial state (x, z), $\left(L_{0}, B_{0}\right)=(0,0)$.
- Firms exit with probability δ.

Separations, entry and exit

- New firms enter at cost K, draw initial state (x, z), $\left(L_{0}, B_{0}\right)=(0,0)$.
- Firms exit with probability δ.
- Firms choose customer separation rates δ_{b}. Worker separation rates δ_{w} are pre-committed in long-term contracts.
- Separation rates are bounded below by exogenous quit rates $\bar{\delta}_{w}$ and $\bar{\delta}_{b}$.

Stationary competitive search equilibrium

Value functions for workers U, W, shoppers V, Q, firms J, firm policies $\lambda, R, \varphi, S, \delta_{b}, \mathcal{C}^{a}=\left(w^{a}(),. \delta_{w}^{a}().\right),\left(L^{\tau}\right)_{\tau=0}^{a}, L, B, p, p^{R}$, entrant firms N_{0}, and search values c^{*} and ρ^{*} such that
(a) Workers search optimally.
(b) Shoppers search optimally.
(c) Firms' value functions J and policy functions solve the recursive firm problem. more
(d) Entry is optimal:

$$
K=\sum_{z^{0}} \pi^{0}\left(z^{0}\right) J\left(0, z^{0}\right)
$$

(e) Aggregate resource feasibility:

$$
\begin{aligned}
& \bar{L}=\sum_{z^{a}} N\left(z^{a}\right)\left\{L\left(z^{a}\right)+\left[\lambda\left(z^{a}\right)-m\left(\lambda\left(z^{a}\right)\right)\right] R\left(z^{a}\right)\right\}, \\
& \bar{B}=\sum_{z^{a}} N\left(z^{a}\right)\left\{B\left(z^{a}\right)+\left[\varphi\left(z^{a}\right)-q\left(\varphi\left(z^{a}\right)\right)\right] S\left(z^{a}\right)\right\} .
\end{aligned}
$$

Social optimality

The competitive search equilibrium is socially optimal. Recursive planning problem: Maximize the social firm value

$$
\begin{gathered}
G\left(L_{-}, B_{-}, z\right)=\max \left\{y B-b L-r\left(R, L_{-}\left(1-\delta_{w}\right)\right)-s\left(S, L_{-}\left(1-\delta_{w}\right)\right)\right. \\
\left.-\rho[L+(\lambda-m(\lambda)) R]-c[B+(\varphi-q(\varphi)) S]+\beta(1-\delta) \mathbb{E}_{z} G\left(L, B, z_{+}\right)\right\}
\end{gathered}
$$

subject to

$$
\begin{aligned}
L & =L_{-}\left(1-\delta_{w}\right)+m(\lambda) R, \\
B & =B_{-}\left(1-\delta_{b}\right)+q(\varphi) S, \\
B & \leq x F(L), \delta_{w} \geq \bar{\delta}_{w}, \delta_{b} \geq \bar{\delta}_{b} .
\end{aligned}
$$

c and ρ are the social costs of shoppers and workers (multipliers on aggregate resource constraints).

Firm policies

- Recruitment expenditures and job matching rates are positively related. If $R>0$,

$$
r_{1}^{\prime}(.)=\rho\left[\frac{m(\lambda)}{m^{\prime}(\lambda)}-\lambda\right]
$$

- Sales expenditures and customer matching rates are positively related. If $S>0$,

$$
s_{1}^{\prime}(.)=c\left[\frac{q(\varphi)}{q^{\prime}(\varphi)}-\varphi\right]
$$

- Faster growing firms offer higher salaries to workers and greater discounts to customers.

Prices and revenue

- Discount price $p=y-\frac{c \varphi}{q(\varphi)}$ falls in φ (and S).
- Reservation price $p^{R}=y-c$.
- Younger firms charge lower prices to build a customer base.

Prices and revenue

- Discount price $p=y-\frac{c \varphi}{q(\varphi)}$ falls in φ (and S).
- Reservation price $p^{R}=y-c$.
- Younger firms charge lower prices to build a customer base.
- Revenue

$$
p^{R} B_{-}\left(1-\delta_{b}\right)+p q(\varphi) S
$$

Calibrated example

- Functional forms:

$$
\begin{gathered}
F(L)=L^{\alpha}, r\left(R, L_{0}\right)=\frac{r_{0}}{1+\nu}\left(\frac{R}{L_{0}}\right)^{\nu} R, s\left(S, L_{0}\right)=\frac{s_{0}}{1+\sigma}\left(\frac{S}{L_{0}}\right)^{\sigma} S, \\
m(\lambda)=m_{0} \lambda^{0.5}, q(\varphi)=q_{0} \varphi^{0.5} .
\end{gathered}
$$

- Parameters

$$
\begin{gathered}
\alpha=0.7, \nu=\sigma=2, \\
\bar{\delta}_{w}=0.05, \bar{\delta}_{b}=0.15, \delta=0.05, \beta=0.96 .
\end{gathered}
$$

- Matching rates for workers (shoppers) are 0.49 (0.70).
- $x=y=1$ (no heterogeneity).
- Expenditures for recruitment (sales) are 1\%-2\% of output.

Firm policies

Firm growth

Response to demand shock (dashed) and productivity shock (solid)

Conclusions and outlook

- Firm dynamics with product and labor market frictions: separate role of demand shocks.
- Quantitative application: calibrate productivity and demand shocks to capture price and output dynamics.
- Implications for wage and price dispersion?
- Experiments:
- Impact of product market regulation on the labor market?
- Implications of aggregate demand versus aggregate productivity shocks?

Examples of nine-digit products

- "Homogeneous" goods:
- 172032144 Fabric of synthetic fibers (with more than 85% synthetic) for curtains (measured in m^{2}).
- 211230200 Cigarette paper, not in the form of booklets, husks, or rolls less than 5 cm broad (measured in t).
- 212514130 Cigarette paper, in the form of booklets or husks (measured in kg).
- Other goods
- 172032144 Sleeping bags (measured in "items").
- 251360550 Gloves made of vulcanized rubber for housework usage (measured in "pairs").
- 297121130 Vacuum cleaner with voltage 110 V or more (measured in "items").

Descriptive statistics

Correlations	RLP	QLP	\widetilde{P}	Empl.	wage/hour
RLP	1				
QLP	0.790	1			
\widetilde{P}	-0.142	-0.719	1		
Empl	0.387	0.315	-0.070	1	
wage/h.	0.543	0.381	0.000	0.439	1
Std.dev.	0.670	0.954	0.594	1.132	0.362

Statistics weighted by employment size. All variables in logs.
Back

Descriptive statistics

Correlations	RLP	QLP	\widetilde{P}	Empl.	wage/hour
RLP	1				
QLP	0.623	1			
\widetilde{P}	0.083	-0.686	1		
Empl	-0.092	-0.053	-0.010	1	
wage/h.	0.330	0.205	0.027	-0.049	1
Std.dev.	0.115	0.166	0.139	0.089	0.063

All variables in logs. Residuals after controlling for year, 2-digit industry and German region.

Correlations and standard deviations

Correlations	$\widehat{P Q}$	\widehat{Q}	\widehat{P}	\widehat{E}	w / h
$\widehat{P Q}$	1				
\widehat{Q}	0.782	1			
\widehat{P}	0.321	-0.339	1		
\widehat{E}	0.339	0.301	0.047	1	
$\widehat{w / h}$	-0.016	-0.024	0.012	-0.019	1
Std.dev.	0.159	0.160	0.105	0.076	0.090

Statistics weighted by employment size. All variables are log growth rates.
Variance decomposition: \widehat{P} accounts for 21% of revenue growth and 19% of the growth of hourly labor productivity.

Correlations and standard deviations

Correlations	$\widehat{P Q}$	\widehat{Q}	\widehat{P}	\widehat{E}	w / h
$\widehat{P Q}$	1				
\widehat{Q}	0.792	1			
\widehat{P}	0.281	-0.364	1		
\widehat{E}	0.247	0.227	0.021	1	
$\widehat{w / h}$	-0.016	-0.016	0.001	-0.033	1
Std.dev.	0.154	0.160	0.099	0.062	0.088

Residuals after controlling for year, 2-digit industry and German region. All variables are log growth rates.

Firms' problem

Firm with shock history z^{a} has state vector $\sigma=\left[\left(L^{\tau}, \mathcal{C}^{\tau}\right)_{\tau=0}^{a-1}, B_{-}, z^{a}\right]$. Recursive problem

$$
\begin{align*}
J_{a}(\sigma)= & \max _{\left(\lambda, R, \mathcal{C}^{a}\right),\left(\delta_{b}, \varphi, S, p, p^{R}\right)}\left\{p^{R} B_{-}\left(1-\delta_{b}\right)+p q(\varphi) S-W-r\left(R, L_{0}\right)-s\left(S, L_{0}\right)\right. \\
& \left.+\beta(1-\delta) \mathbb{E} J_{a+1}\left(\sigma_{+}\right)\right\} \quad \text { s.t. } \\
L^{\tau+}= & \left(1-\delta_{w}^{\tau}\left(z^{a}\right)\right) L^{\tau}, \tau=0, \ldots, a-1, L^{a+}=m(\lambda) R, L_{0}=\sum_{\tau=0}^{a-1} L^{\tau+}, \\
W= & \sum_{\tau=0}^{a} w^{\tau}\left(z^{a}\right) L^{\tau+}, \\
B= & B_{-}\left(1-\delta_{b}\right)+q(\varphi) S \leq x F(L), L=\sum_{\tau=0}^{a} L^{\tau+}, \\
\rho^{*}= & \frac{m(\lambda)}{\lambda}\left[W\left(\mathcal{C}^{a}, z^{a}\right)-b-\beta U\right] \text { if } \lambda>0, \\
p= & y_{a}-\frac{c^{*} \varphi}{q(\varphi)} \text { if } \varphi>0, p^{R}=y_{a}-c^{*} . \tag{back}
\end{align*}
$$

