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1 Introduction

Growing recognition of the role renewable energy should play in the decarbonization process raises the
importance of identifying the optimal portfolio of RES technologies. Within this theme, one of the most
crucial research tasks is to understand the benefits associated with a more diversified portfolio, that is a
portfolio which includes a larger number of RES technologies, even if some of them are not yet competitive.
On the one hand, support for RES technologies that are currently more costly than the leading technologies
involves larger costs with regard to the support system and/or less support for the leading RES technolo-
gies. This can result in slower growth of the share of RES in the total electricity mix. On the other hand, The
Special Report on Renewable Energy Sources and Climate Change Mitigation by IPCC notes that diversity
of RES technologies will facilitate decarbonization in the long run, and technologies that are currently in the
stage of early development can potentially play an important role in the future. This view is supported by
several studies focused on a range of climate-friendly technologies (Francek, Hekkert and Godfroij 2004,
Richels and Blanford 2008).

This paper explores the benefits and costs of RES technologies differentiation when technological progress
is subject to uncertainty. We shall address this research topic in two steps: first, we present the variety of
approaches to RES differentiation existing among the most common RES support policies and examine
what motivates policymakers to choose policies that lead to greater RES differentiation. Second, we shall
set up an analytical model which examines the benefits (or costs) of increasing the number of technologies
supported by the central planner when the parameters driving technological progress are random variables.

We focus on one particular type of RES support policy: competitive bidding, also referred to as tendering
or auctioning. The number of countries using the auction mechanism has grown from nine in 2009 to 64 in
2015. Although the largest competitive procurements have occurred in emerging economies (e.g. in Latin
American countries, China and India), the system is also gaining momentum in some developed countries
(REN21 2014, REN21 2015, REN21 2016). This is especially the case in the European Union (EU), as the
recent European Commission Guidelines on State aid for environmental protection and energy 2014–2020
indicates that RES competitive bidding will have to be implemented for almost all new installations in EU
member states from 2017 onwards (European Commission 2014).

2 Description and examples of auction systems

2.1 Characteristics of the auction system

The main assumption of an auction system is that it lets the market decide which is the most competitive
bid for the specified source of energy. It aims to reveal the real cost of a specific project/technology and
ensure a cost-effective level of support (EuropeanCommission 2014). Auctions give a reliable and long-term
income for RES investors as well as clear information for the public authority over the support provided.
Therefore they are considered to deal with asymmetric information problem well, which can be severe,
especially in technologies with large uncertainties about their cost trends (del Rio and Linares 2014). They
also increase the transparency of the procurement process.

At the same time, the literature recognizes the potential failures of the auction mechanism. On the one
hand, lack of competition may lead to high tariffs and overcompensation. On the other hand, in a very
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competitive area there is a risk of underbidding, resulting in high levels of contract failures (Maurer and
Barroso 2011, European Commission 2014, IRENA 2013, REN21 2015). Auctions are also often criticized
for being suitable only for large-scale established developers, as small-scale or new project developers are
deterred by high transaction costs and uncertainty over auction results (IRENA 2013, del Rio and Linares
2014). Most empirical studies show that auctions are successful in reducing the price of RES, but problems
with high transaction costs and contract failures seem to be rather common (e.g.: Elizondo-Azuela et. al.
2014, Held et. al. 2014, del Rio and Linares 2014).

The literature reveals a fairly broad range of overviews of the main features and performance of different
types of RES support schemes. However, many papers focused on the comparison of feed-in tariffs and
renewable purchase obligations, as thesemechanisms were prevalent in public policy choices until recently
(e.g. Menanteau, Finon and Lamy 2003, Lauber 2004, Ringel 2006, Rivers and Jaccard 2006, Fouquet and
Johansson 2008, Jacobsson et. al. 2009, Fischer and Preonas 2010, Tamás, Bade Shrestha and Zhou 2010,
Schmalensee 2012, Marschinksi and Quirion 2014). Del Rio and Linares (2014) even indicated that in some
sense auctions had been widely dismissed. Yet the dissemination of the competitive bidding mechanism
for RES support over the world has resulted in a visible increase in researchers’ concerns about its charac-
teristics, design options and performance (e.g.: Nielsen, Sorknæs and Østergaard 2011, Maurer and Barroso
2011, Mayr, Schmidt and Schmid 2014, Elizondo-Azuela et. al. 2014, del Rio et. al. 2015b).

2.2 Technological diversity as auction design option

A wide range of options exist for designing auctions, and implemented schemes differ a lot between coun-
tries. In fact, the design of an auction is the main determinant of its effectiveness (del Rio and Linares
2014). However, there is no “one-size-fits-all” type of auction design, and each time it has to be adapted to
the specific conditions of a given country’s power sector conditions (Maurer and Barroso 2011). Although
the process of selection of individual auction system characteristics is challenging, the flexibility of the
instrument gives public authorities the opportunity to achieve particular public policy objectives (IRENA
2013).

The design of an auction must take into account various factors. The most important are: the supply and
demand specification (auctioned targets/scope/volume, technological specification, size, actors and geo-
graphical diversity, prequalification criteria); the criteria for selecting winners (price-only or multi criteria
award, pricing rules, price ceilings and minimum prices); and contract characteristics (contract duration,
penalties for non-compliance/delays, updating of remuneration over time) (Elizondo-Azuela et. al. 2014, del
Rio et. al. 2015a). In the context of this paper, supply specification with regard to technological diversity is
the key issue. In general, auctions can be either technology-neutral or technology-specific. In technology-
neutral auctions, different technologies compete among each other in the same auctions. This results in the
system achieving maximum cost-efficiency, as only the least costly technologies are successful. What is
more, technology-neutral auctions reduce the risk of undercontracting due to lack of competition. However,
in such auction systems, onlymature (i.e. the cheapest) technologies are promoted. That discourages tech-
nological diversity and does not incentivize innovation for immature technologies. In technology-specific
auctions, the bidding process is limited to a selected technology or group of technologies, usually defined
as technology bands. This allows the public authority to drive multiple policy objectives and provides di-
versification of energy mix. Technology-specific auctions can reduce RES costs, since supported immature
technologies may outperformmore mature technologies in the future. They have also some disadvantages,
as the fragmentation of the bidding process leads to lower competition (IRENA 2013, del Rio and Linares
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2014, IRENA and CEM 2015).

Technology-neutral auctions have taken place is various countries, e.g. in the Netherlands and Brazil. The
case of the Netherlands shows that the act of defining the technologies eligible for support is crucial. The
auction system in this country allows competition between renewable electricity, renewable heat and re-
newable gas – all under one budget. As a result, low-cost heat technologies consume most of the budget
available. The system has been criticized for not driving innovation; however, the main government’s goal
has been achieved, as the auction system resulted in a significant reduction of support costs, at least
in the short run. Moreover, the less mature technologies can benefit from incentives outside the auc-
tion system, such as subsidies and tax benefits for R&D (Held et. al. 2014). In Brazil, auctions can be
both technology-neutral and technology-specific. In the period 2007–2010 all auctions involving RES were
technology-specific. This, together with high local content requirements (e.g. a minimum share of compo-
nents had to be sourced from Brazilian suppliers), led to market development and rapid growth of domestic
supply chains, especially in the wind power sector. As a result, wind technologies managed to become
competitive in technology-neutral auctions, which also cover conventional sources. Yet there are concerns
that wind may be crowding out other RE technologies (IRENA 2013, Elizondo-Azuela et. al. 2014, IRENA and
CEM 2015).

Differentiating auctions between technologies is a widespread practice, and is applied more frequently than
technology-neutral auctions. This is the case e.g. in India, Morocco, Peru and South Africa (IRENA 2013,
del Rio and Linares 2014). In general, technology-specific auctions are recognized as being advantageous
for less mature technologies and promoting energy-mix diversity. However, these features are not a given
and their presence depends substantially on public policy choices. In South Africa, separate auctions were
carried out in the years 2011–2013 for onshore wind, concentrated solar power, photovoltaics, biomass,
biogas, landfill gas, small hydro and small projects (<5 MW). Maximum capacity limits were set for each
technology in each auction, so there was no competition between different technologies. Yet the results
of the auction were not satisfying, as the lack of competition led to high average prices and no successful
bids in some of the technology bands (de Lovinfosse, Janeiro and Gephart 2013).

The technology-specific auction system is also currently being introduced in Germany. Pilot auctions for
photovoltaics took place in 2015 and they have been assessed as successful, with intensive competition
being their most important feature. From 2017 funding will be auctioned for onshore wind, offshore wind,
photovoltaics and biomass projects (Müller 2016). The public authorities have indicated three main objec-
tives for introducing the auction system. Firstly, support for renewable energy should be concentrated on
the least expensive projects. Secondly, the targets for renewable energy capacity expansion and deploy-
ment corridors for each technology should be met. Thirdly, stakeholder diversity should be ensured (BMWi
2015). It is emphasized that different technologies require different conditions, therefore unified auctions
for all technologies are pointless. Meeting the imposed objectives – especially the second one – is not
possible under the technology-neutral auction system. However, to meet the objectives, the auctions’ de-
sign, beyond being technology-specific, should also promote significant competition between the projects,
provide high probability and assurance that the projects will be realized as well as ensure that the bidding
process is simple, transparent and attainable for all actors (BMWi 2015, Ecofys 2015).

An RES auction system has also recently been introduced in Poland (since July 2016). In this case, the
system chosen is a mix of technology-neutral and technology-specific auction designs. The Act on Re-
newable Energy Sources introduced seven categories of installations: with a capacity higher than 3504
MWh/MW/year; with a capacity higher than 3504MWh/MW/year andCO2 emissions lower than 100 kg/MWh;
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using waste in producing energy; using solely biogas in producing energy; owned by members of an energy
cluster; owned by members of an energy cooperative; other. On the one hand, this means that the auction
system in Poland is not fully technology-neutral, because there are some limitations on the participation
of different technologies. On the other hand, the system is not fully technology-specific, because most of
the bands are dedicated to more than one specific technology. The defined bands give high preference for
some energy sources such as water, biogas and multi-fuel installations burning biomass together with coal,
while the most common clean energy sources – wind and photovoltaics – can compete in principle only in
the last of the seven categories listed. The government has stated that the system aims at providing more
support for technologies which generate energy in a stable and predictable manner. It also leads to a bet-
ter use of locally available resources (especially biomass) (Act on RES 2016). The Polish example shows
that technology differentiation in auctions is not only a case of selection between technology-neutral and
technology-specific systems, but can also be linked with more detailed auction design options, public policy
choices and country-specific conditions.

3 The analytical model

The primary aim of this section is to examine the costs and benefits of RES differentiationwhen the outcome
of the technology development process brings uncertain results. We abstract from the other benefits of
differentiation, for instance, due to the intermittency of some RES.

The theoretical results are derived from the closed-form solution of a simple analytical model. The pur-
pose of the analysis is to understand which policies minimize the expected price of renewable energy. In
the model we assume that the expected price is given by the cost of the technologies, which in turn is de-
termined by learning processes and exogenous technological shocks for a set of RES technologies. The
learning rate parameters as well as the realizations of the exogenous technological shocks are random and
distinct for each technology. Policies promoting a large number of technologies, which correspond to a
wide range of technology-specific auctions, on the one hand will require support for technologies which are
initially relatively costly, but on the other hand will allow a large number of technologies to benefit from the
learning-by-doing process. Policies supporting only the cheapest technology, coresponding to technology-
neutral auctions, will result in lower energy costs initially, but will limit the learning process for all remaining
technologies. As we will demonstrate in this section, both, the costs and benefits of the differentiation de-
pends on the variance of learning rates and the variance of exogenous shocks.

3.1 The set-up of the model

In the model we will consider two periods. The assumed timeline is presented in figure 1 and discussed
below.

In the first period, which we index with t = 1, all technologies are still in the development stage. The
government in this period takes two actions. First, by designing the auction system, it decides how many
technologies will have a secured demand in period t = 1. The choice of a technology-neutral auction
implies that only one technology is supported for this period. Large differentiation would correspond to
a large number of technology-specific auctions. The commitment to organize an auction for technology i
implies that the capacity of that technology will grow by ∆ ln (Capacityit) = ∆1i > 0. Technologies
without a dedicated auction or, in the case of a technology-neutral auction system, technologies which
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do not win that auction, will have no growth of capacity. We will use N to denote the set of supported
technologies, n to denote the number of supported technologies and S to denote the set of technologies
which did not receive any support. Finally, ∆ stands for the vector of ∆i’s. Note that this vector contains all
the information of the policy (including information on the number of technologies supported by the policy).
Importantly, in this paper we do not examine the consequnces of altering ∆′is other than the choice between
setting ∆i = 0 and ∆i > 0. In other words, in this paper we only examine the effects of increasing the
number of supported technologies and not the effects of increasing or decreasing the size of this support.
One consequnce of this is that we will not discuss the costs of differentiation in terms of lowering the
support for already-supported technologies. This narrowing of the focus is discussed after proposition 1.

The second task of the government in the first period is to organize an auction and purchase electricity at
a cost determined by the state of technology at that moment of time.

The cost of each technology in period 1 is determined by an exogenous shock, i.e. a shock which is in-
dependent of the learning-by-doing process in period 1. These shocks could be the outcome of the past
learning-by-doing process or by technological breakthroughs. We label the shock as exogenous since it is
independent of the current policy choices. The shock sets the cost of technology i at the level of e−η1i . We
assume that it takes place before the government selects the supported technologies. The reason for the
explicit modeling of this shock and its interpretation is presented in section 3.3.

The firms will manufacture the technologies which received funding through auctions; this manufacturing
is accompanied by the learning-by-doing process. The learning process will result in the reduction of the
cost of a given technology for the period 2 by a factor eγi∆1i , where γ is the slope of the learning curve1.
We allow the parameter γ to be random, independent and identically distributed (i.i.d.) across technologies
with a distribution defined by the cumulative density function G (x). In order to ensure the tractability of
the derivations, whenever we consider random learning we assume that γ is positive and 0 < G (x) < 1

for any positive finite number, which implies that there is a positive probability that the learning rate is zero
and that there is no upper bound for the learning rate. This last assumption is discussed in detail in section
3.2.

In addition, the cost of technology in period 2 is affected by the second exogenous shock, which takes place
at the beginning of period 2. Thus, the final cost of the technology at the time it is purchased in period 2
is given by e−γi∆1i−η1i−η2i . For mathematical convinience we will use Ai ≡ e−η1i−η2i to denote the total
effect of the two exogenous shocks. Let H (x) denote the cumulative density function of the shock η2i.
Whenever we consider the random exogenous shock in period 2, we assume that 0 < H (x) < 1 for any
positive finite number, which implies that there is a positive probability that the shock is zero and that the
shock has no upper bound.

In the second period (indexed with t = 2), the central planner chooses the winning technology - the opti-
mal (most productive) technology to serve the entire market. We fix the demand in the second stage and
normalize it to unity. Thus, the demand for the technologies is ∆2i = 1 for the optimal technology and
∆2i = 0 for all the remaining technologies.

1The slope is directly related to the well-known learning rate parameter: learning rate = 1− 2−γ
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Figure 1. Model timeline

3.2 Random learning rate - general result

The standard learning curve is the relation between the total cumulative installed capacity of the technology
and its instalation cost

ln (Costi) = −γi ln (Capacityi)

The curve is built on the presumption that reduction in costs of technology depends on the demand for
instalations (i.e. a change in cumulative capacity) in a given period of time. This dependence could be
explained by either the concept of learning-by-doing, i.e. a reduction in manufacturing costs due to the
accumulation of experience, or by an increase in investment in R&D when firms are guaranteed demand
over a given period of time (Witajewski-Baltvilks et al. 2015). In our set-up the manufacturing takes place
in period 1 and its fruits are harvested in period 2.

Note that in this set-up the uncertainty of the learning process does not have any impact on the costs of
electricity in period 1. For example, if two, otherwise identical, countries face different variances of the
learning process the two countries will experience exactly the same costs/benefits of differentiation in the
first period. However, the optimal policy in the two countries could be different due to differences in the
benefits of differentiation in the second period. Consequently, to examine the effect of the variance of the
learning on the optimal policies, it is sufficient to examine the relation between the differentiation and the
expected electricity cost in the second period2.
Since ∆1i = ∆ ln (Capacity1i), the unit instalation cost for technology i at time t = 2 isAie−γi∆1i , where

2More formally, if the objective is to select policy which minimizes the weighted cost of energy in the two periods
minnW = ω1c1 (n, v)+ω1c1 (n) where c1, c2 are the costs of renewable electricity in the two periods, ω1 and ω2 are
theweights and v is the variance of learning rates, then the optimal policy is given by the sign ofω1

dc1(n,)
dn

+ω2
dc2(n,v)
dnor by the condition ω1

dc1(n,)
dn

+ ω2
dc2(n,v)
dn

= 0. Thus a change in v could affect the optimal choice of n only through
a change in dc2(n,v)

dn
.
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Ai is determined by the exogenous technological shocks (for future reference, let us defineA as the vector
of Ai’s for the set of all available technologies). There will be one “winner of the race” - the technology
with the lowest cost among all technologies. We wish to determine how the expected cost of this “winning”
technology depends on the planner’s choice of n in period t = 0.

In this subsection we assume that learning is the only source of uncertainty. This implies that V ar (ηi) = 0

and thus the realization of η2i is known to the planner in Period 1.

The probability that the cost of the best technology in period 2 will be larger than z is the probability that
e−γi∆1iAi > z for every i. Since γ’s are independent, the cumulative density function of the winner’s cost
in period 2 conditional on the realization of the exogenous shocks and policy choices, F (z|A,∆) will be
then defined by

1− F (z|A,∆) =
∏

i∈N∪S
P
(
Aie
−γi∆1i > z|A,∆

) (1)
where P (X) denotes the probability of an eventX.

Now consider two alternative policy choices. The first choice, indexed with p1, is given by the vector ∆p1.
The second choice sets ∆p2

1i = ∆p1
1i for every i ∈ Np1, that is every technology which received support

under the first choice receives the same support under the second policy choice. In addition, the second
policy choice sets ∆p2

1k > 0 for technology k from the set Sp1, that is p2 supports one technology which
did not receive the support under the first policy choice.

Now suppose for a moment that at the start of the learning process all technologies are symmetric, i.e.
Ai = A and for every i ∈ N ∪ S. Then, recalling that γi > 0, 1 could be expressed as

1− F
(
z|A,∆p2

)
= G

(
1

∆1k
ln

(
Ak
z

)) ∏
i∈Np1

G

(
1

∆1i
ln

(
A

z

))
≤

∏
i∈Np1

G

(
1

∆1i
ln

(
A

z

))
= 1− F

(
z|A,∆p1

)
with the inequality being slack for every z ≤ A (otherwise both sides of an equality may be equal to zero).
Consequently, the policy which excludes investment in technology k results in a cumulative density func-
tion which first order stochastically dominates the cdf resulting from the policy which includes investment
in technology k. In other words, the probability that the expected cost is larger than z under larger differ-
entiation is never larger than under low differentiation and is strictly smaller for some values of z. This
implies that the expected cost of renewable electricity in the second period must be lower under larger
differentiation.

In the case of no uncertainty, the expected value isEn (z |∆i1 ) = max
{
Aie

γ∆i1
}
, which does not depend

on the number of technologies.

For the general case (relaxing the assumption on symmetry), we find the following result:

Proposition 1 Consider the set-up outlined in section 1.1. An increase in the number of technologies
with positive investment which does not affect the level of investment for the already supported
technologies decreases the expected cost of the winner technology. When there is no uncertainty,
there is no benefit from the larger differentiation between technologies.
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Proof The proof for the symmetric case is presented in the text. Below we derive the proof for the general
case.

Using 1, we find that

1− F
(
z|A,∆p2

)
=

∏
i∈Np2∪Sp2

P
(
Aie
−γi∆1i > z

)

=
∏
i∈Np1

P

(
γi <

1

∆1i
ln

(
Ai
z

))
P

(
γk <

1

∆1k
ln

(
Ak
z

)) ∏
i∈Sp2

P (Ai > z)

= G

(
1

∆1k
ln

(
Ak
z

)) ∏
i∈Np1

G

(
1

∆1i
ln

(
Ai
z

)) ∏
i∈Sp2

P (Ai > z)

≤ P (Ak > z)
∏
i∈Np1

G

(
1

∆1i
ln

(
Ai
z

)) ∏
i∈Sp2

P (Ai > z)

= 1− F
(
z|A,∆p1

)
The assumption thatG (0) > 0 (there is a positive probability that a learning rate is positive) implies that if
z ≤ mini∈N∪S {Ai}, then

∏
i∈Np1 G

(
1

∆1i
ln
(
Ai
z

))∏
i∈Sp2 P

(
Ai > z|A,∆p2

)
> 0. In addition, it im-

plies that z < Ak and thus P (Ak > z) = 1. Finally, the assumption thatG (x) < 1 for any finite positive
x (which means that there is no upper bound for the learning rates) ensures thatG

(
− 1

∆1k
ln
(
z
Ak

))
< 1.

Together, these results imply that for z ≤ mini∈Np1 {Ai}, the condition above is slack: the cumulative
density function for the policy choice which excludes investment in technology k first order stochastically
dominates the cdf for the policy choice that includes investment in technology k. That is, as in the symmet-
ric case, the probability that the expected cost is larger than z under larger differentiation is never larger
than under low differentiation and is strictly smaller for some values of z.

The stochastic dominance then implies the strict inequality for expectation of cost: E
(
z
∣∣∆p1

)
> E

(
z
∣∣∆p2

)
.

In our case this can be easily demonstrated using the fact that the cost must be positive:

E
(
z
∣∣∆p2

)
=

∫ ∞
0

zf
(
z
∣∣∆p2

)
dz

=

∫ ∞
0

(1− F (z)) dz

=

∫ mini∈Np1{Ai}

0

(
1− F

(
z
∣∣∆p2

))
dz +

∫ ∞
mini∈Np1{Ai}

(
1− F

(
z
∣∣∆p2

))
dz <

∫ mini∈Np1{Ai}

0

(
1− F

(
z
∣∣∆p1

))
dz +

∫ ∞
mini∈Np1{Ai}

(
1− F

(
z
∣∣∆p1

))
dz = E

(
z
∣∣∆p1

)
In the case of no uncertainty, the expected value isEn (z |∆i1 ) = max

{
Aie

γ∆i1
}
, which does not depend

on the number of technologies.

QED

The proposition involves two important assumptions, which we discuss below.
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Fixed investment for remaining supported technologies In the proposition we compare two poli-
cies which differ only in the number of supported technologies. This set-up implicitly implies that support
for an additional technology does not require a reduction in demand for the technologies which are already
supported under smaller differentiation. There are two reasons why in this paper we have focused on this
case. The first reason is its mathematical tractability. The second reason is that this dependency is al-
ready accounted for in the bottom-up models on optimal differentiation. The primary aim of our paper is
to discuss the costs of benefits of differentiation that were not previously discussed by the literature and
to understand in what direction they may bias the previous modeling results and encourage accounting for
them in the new generation of energy models. Since the costs of differentiation in terms of lower support
for other technologies has been already covered in the literature, we do not elaborate on it further in our
study.

Nevertheless, to illustrate the potential trade-off between insurance provided by differentiation and its cost
in terms of lowering the scale of the learning-by-doing for selected technologies, in section 3.3 we sketch
a simplified model of optimal RES mix which allows ∆1i to depend on the total number of supported tech-
nologies.

No upper bound for the learning rates The second important assumption, which ensures that Propo-
sition 1 holds, is the assumption of no upper bound for the learning rate. This assumption cannot hold in
the presence of floor costs, which can arise when the productivity of a given technology is constrained by
physical limits. The presence of floor costs has been challenged by some studies. For instance, Young
(1993) argues that while in the short run the learning process could indeed be bounded, in the long run
these bounds can be shifted by research (or a learning-by-searching process). Nevertheless, even if there
are no long run limits on productivity improvement (e.g. because the constrained physical processes that
a given technology currently relies on can be replaced by processes that are not yet known or understood
by scientists at the moment), the physical limits may imply a bound on learning processes in the short run,
particularly for narrowly defined technologies.

To understand why the result in the proposition might not hold when the learning rate is bounded, consider
the following example. Suppose that there are only two technologies: technology 1 and technology 2 char-
acterized byA1 andA2, and learning rates γ1 and γ2 respectively. Assume also that the learning rates have
the uniform distribution γ ∼ Uniform [0, γ]. The government considers whether to support both tech-
nologies or to limit the support to technology 1. Suppose also that A1

A2
< 1, i.e. prior to learning-by-doing

technology 1 is cheaper than technology 2. This is presented in figure 2. The dashed line represents the
probability that the logarithm of the cost of technology 2 is smaller than x . If A1 < A2e

∆2γ , that is if the
bound of the learning rate γ is small relative to the distance between ln (A1) and ln (A2), then technology
2 cannot compete with technology 1 even if it reaches maximum learning-by-doing for a given support ∆2.

The example above shows that the benefits of differentiation are questionablemark when the differentiation
involves support for technologies whose costs are currently much higher than the costs of the cheapest
renewable technologies. If experts agree that these technologies will never be able to compete with other
RES technologies, supporting them will be a waste of resources.

Consequences for energy modeling In the current generation of bottom-up models the predictions
of an optimal policy which involves support for more than one technology is usually achieved by adopting a
series of physical constraints on renewable energy sources. For instance, while the models often indicate
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Figure 2. Example of the problem with bounded learning rates

that hydroelectric power is the cheapest renewable energy source, they also indicate benefits from invest-
ing in other sources since the large-scale deployment of hydro-power is constrained by the availability of
appropriate sites. Since the models assume constant learning rates, they do not take into account the ben-
efits of differentiation resulting from the uncertainty of the learning rates. Consequently the optimal level
of differentiation predicted by these models is biased downward.

3.3 A simple model of the optimal RES mix

In this section we illustrate the prediction of proposition 1 using a simple stylized model of optimal differen-
tiation between RES technologies. We show that ignoring the uncertainty of learning curves causes the bias
of model prediction: according to the model the optimal differentation is smaller than the differentiation
when uncertainty on the learning curves is taken into account.

In this sectionwe introduce several additional assumptions in order to improve themathematical tractability
of the model. These assumptions facilitate the exposition of the key forces driving the benefits and costs
of differentiation under uncertainty of the learning rate and allow for simple graphical illustration of the
results. However, it is important to stress that the general result in proposition 1 is independent of these
additional assumptions.

Suppose that the planner must supply the following fixed quantities of electricity: Q1 in period 1 andQ2 in
period 2. In period 2, the planner will deliver the electricity by employing the cheapest available technology.
In period 1, the planner will need to design an auction system which distributes the demand Q1 across n
technologies. The task of the planner will be to choose the optimal number of supported technologies with
an objective of minimizing the expected value of the total cost of electricity produced from renewables.

In order to simplify themodel, in this section we assume that all technologies face the samemarginal cost in
period 1: Ai = 1 for every i. This assumption implies that if the planner decides to support n technologies,
the demand will be spread equally across all these supported technologies: q1i = Q1

n .
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In this case the planner’s minimization problem can be stated as

min
n

{
n∑
i

Q1

n
+ En (z)Q2

}
(2)

where En (z) is the expected cost of the cheapest technology in the second period. The next step is to
express this expectation in terms of the number of supported technologies, n.

Each technology that is granted an auction will experience a growth of its cumulative capacity by a positive
factor ∆1i > 0. Since ∆1i stands for the growth relative to the capacity at the beginning of period 1, we
need to make an additional assumption regarding that initial capacity. To preserve the symmetry of the
problem we will assume that the initial capacity is given by q0 and is the same across all technologies. This
implies that ∆1i = q1i

q0
= Q1

q0n
= ∆1, which is invariant between all supported technologies.

As in the set-up proposed in the previous section, we assume that firms then build the capacity, accord-
ing to planner’s decision determining ∆1i , and improve the technology through learning-by-doing. The
improvements will increase the productivity of the technology and reduce its cost to the level of e−γ∆1 .

Finally, to ensure that the solution to the minimization problem takes a closed form, we assume that γ
follows the Gumbel distribution. In this case its cumulative density function is given byG (x) = e−e

−x−µ
β ,

whereβ > 0 is the scale parameter andµ is the location parameter. The variance of γ is given byV ar (γ) =
π2

6 β
2.

Under these assumptions it can be shown that the expected value of the cost of the cheapest technology
in period 2 is given by (for detailed derivations, see the appendix)

E (z) = n−β∆1e−µ∆1Γ (1 + β∆1) (3)
where Γ (.) is the well-known gamma function. This expression allows us to identify two contradicting
effects of technological differentiaiton.

First, for the fixed ∆m the expression is clearly decreasing in n, implying that a larger number of varieties
reduces the expected cost of the most effective technology in the second period. This captures the notion
that every additional technology in the basket of auctioned technologies carries a positive probability that
its learning rate will be larger than any other technology.

Second, differentiation increases the expected price through its negative effect on ∆1. To understand this,
suppose that at the beginning of period t = 1 all technologies have a capacity equal to Q

N and suppose
that the planner expects that over this period the total capacity will increase to Q (1 + g). Since the total
auctioned capacity is spread equally across technologies, the change in capacity for each technology be-
tween period 0 and 1 is given by Q(1+g)

n − Q
N and the growth of capacity for each technology is given by

∆1 = gN
n , which is inversely proportional to n. Since for β < ξ = 1.44 (ξ is the argument minimizing the

Gamma function in its positive domain) the expected costs are decreasing in ∆1, an increase in n will lead
to an increase in costs through this channel.

The simple intuition for this dependency is that for a fixed increase in total capacity, more technologies
involves a smaller increase in capacity per technology reducing the scale of learning-by-doing. As a result
we shall expect a smaller drop in the cost for each technology.

The presence of these two counteracting effects implies the first trade-off between widening and narrowing
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Figure 3. Optimal number of supported technologies as a function of V ar (γ)

Table 1. Optimal auction design for the various levels of learning rate variance
Variance of Optimal auction designthe learning parameter

V ar (γ) ∈ (0, 0.06) technology-neutral auction
or auction for one technology

V ar (γ) ∈ [0.06, 0.20) auction with separate baskets
for two technologies

V ar (γ) ∈ [0.20, 0.66) auction with separate baskets
for three technologies

V ar (γ) > 0.66 auction with separate baskets
for four technologies or more

technological differentiation. The First Order Conditions to the problem stated in euqations (2) using (3)
implies that (for the interior solution) the optimal choice of n will satisfy

ln (n) = 1− µ

β
+ ψ (1 + β∆1)

where ψ is a digamma function. The optimal number of supported technologies for different values of
the variance of the learning parameter γ, which measures the degree of uncertainty associated with the
realization of the learning rates, is plotted in figure 3 and presented in table 1.

Notice that when there is no uncertainty (β = 0), then the planner’s minimization problem takes the form
minn

{
Q1 + e−µ∆1Q2

}
, which is clearly decreasing in ∆1 and thus increasing in n. Now the trade-off

between benefits and costs of differentiation disappears: themodel predicts that the cost will beminimized
when the planner chooses the smallest possible number of technologies for period 1, n = 1. In other words,
when the uncertainty on the value of the learning rate is ignored, the model biases the projection on the
optimal level of RES differentiation downward.

We stress again that the sole purpose of this subssection was to illustrate the predictions of proposition 1 in
the most tractable way possible. The results of the simulation presented in figure 3 and in table 1 show that
a higher level of uncertainty regarding the learning rate should incentivize a higher differentiation of RES in
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the energy mix. However, it is important to keep in mind that this simulation ignores the other benefits of
an increase in differentiation, such as complementarity between intermittent RES.

3.4 The exogenous technological shocks

In this section we will explore the effect of an alternative form of uncertainty: instead of uncertainty in the
learning-by-doing, we will allow the costs of the technology installed to be hit by an exogenous shock, such
as a change in material prices or scientific discoveries and technological inventions that are independent
of the learning-by-doing process. As indicated in figure 2, we will distinguish between two types of shocks.
The first type can take place before the government selects the supported technologies for period 1. In
effect, this shock will determine the heterogeneity of technologies at the moment of the planner taking the
decision in period 1. Larger variance of shocks should be therefore interpreted simply as an increase in
technological heterogeneity. The second type of shock takes place after the selection, and thus remains
random at the moment of auction design. In effect, this shock will be a source of uncertainty faced by the
planner at period 1. We will examine each of these shocks in the separate subsections.

The reasonwhywe distinguish between these two types of shocks is to highlight the fundamentally different
consequences of these two types of shocks for the effects of differentiation at period 1. While the presence
of type I, i.e. the presence of heterogeneity, will increase the costs of differentiation, the presence of type
II, i.e. the presence of uncertainty, implies that the differentiation brings benefits.

The separation of the costs and benefits will be helpful for understanding the implication of introducing
exogenous shocks in more complicated models. In contrast to our simple two-period model, large energy
system models and integrated assessment models include a large number of subsequent periods. Trans-
lating our results into predictions of these models imply that an exogenous shock at time t+1 will be of
type II from the perspective of period t and of type I from the perspective of period t. In plain language, a
shock which causes uncertainty from the perspective of period t also causes heterogeneity from the per-
spective of period t+1. Combining this with our result, this implies that exogenous technological shocks
will increase the benefits of differentiation at time t as well as generate costs of differentiation at time t+1.
The introduction of the distinction between type I and type II will allow us to disentangle these two effects.

In addition to the discussion of the costs and benefits of differentiation, in the following two subsections
we will discuss how the effects depend on the feasibility of learning-by-doing. We will demonstrate that
while the shock of type I always increases the costs of differentiaiton, the consuquences of the presence
of type II will depend on whether or not the technologies may experience learning-by-doing. If yes, then
the presence of type II will imply that differentiation brings benefits in terms of lower energy costs in the
future. If not, even when type II shock is present differentiation brings no benefits. These results can be
summarized with a policy recommendation: large and frequent exogenous shocks on technological costs
imply that countries that do not have a chance to experience learning-by-doing should limit differentiation
and choose the technologies which are cheapest at a given point in time.

3.4.1 The exogenous shocks of type I - before the choice of technologies for period 1.

We start by evaluating the effects of diversification in the presence of exogenous shocks of type I. In this
subsection we assume that there are no exogenous shocks in period 2. We also assume that the learning
rate is constant and known to the planner at the moment of taking the decision in period 1. Consequently
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the planner in period 1 does not face any uncertainty. However, the exogenous shock in type I generates
heterogeneity, which has to be faced by the planner.

The consequences of this heterogeneity are straightforward. Since there is no uncertainty, the planner
knows already in period 1 which technology will win the race and be selected in period 2. This implies
that the diversification has no effect on the costs of electricity in period 2. On the other hand when, due
to type I shocks, the costs of technology vary significantly, the diversification must imply a support for
technologies which are far from being the leading (least costly) technology. The difference in the costs
between technologies then constitutes the costs of diversification.

This logic is summarized by the following proposition and formally derived with the proof below.

Proposition 2

The presence of technological heterogeneity caused by the exogenous shocks of type I (the shocks before
the choice of technologies in period 1) increases the costs of differentiation

Proof

The evaluation of the expected costs of energy in the period 2 when there is no uncertainty becomes trivial:

E (z|∆i1) = max
i∈N

{
e−ηi1−∆i1γ

}
Since the technology with the lowest cost in the second period always belongs to the setN , the expression
above does not depend on the size of setN .

Regarding the first period, the unit energy cost is given by
∑

i∈N ωie
−ηi1 , where ωi = ∆i1∑

k ∆k1
. The benefit

of an additional technology in the setN is given by

∑
i∈N

ωie
−ηi1 −

∑
i 6=j

ωie
−ηi1 + ωj min

i∈S

(
e−ηi1

) =

= ωj

(
e−ηj1 − emin(−ηi1)

)
< 0

The condition implies that replacing one technology with the the technology which is characterized by the
smallest possible cost will always lower the unit cost of the planner.

If there are no idiosyncratic shocks of type 1, i.e. if η1i = η1, then the expression above is equal to zero,
i.e. there are no benefits to be derived from differentiation.

3.4.2 The exogenous shocks of type II - before the choice of technologies for period 1.

In the last subsection we examined the role of the exogenous shock in the second period. The randomness
of the realization of the shock captures the uncertainty about the future costs of technologies which is
faced by the central planner in period 1 and which does not originate from the uncertainty of the learning-
by-doing process. The shock can be interpreted as an unexpected technological breakthrough that happens
regardless of the current demand for technology, or an unexpected change in the material costs, which can
have an asymetric effect on the costs of various renewable technologies.
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The model predicts that the presence of such shocks increase the benefits of differentiation when the
learning rate is positive (and not random). When learning is not possible, i.e. when the current demand for
technology has no effect on the costs in the future, then the differentiation will bring no benefits.

The prediction has important policy implications. For example, it suggests that there is no reason to dif-
ferentiate the technologies in the peripheral economies which cannot influence the costs of the frontier
technologies. On the other hand, the possibility of shocks to future costs should encourage the countries
at the technological frontier, which have significant learning potential, to diversify their portfolio of sup-
ported technologies even when the learning rate is constant or predictable.

The intuition behind the result is not immediate and requires careful explanation. We outline the logic behind
the results in the subsequent paragraphs and conclude by restating the formal proposition and its formal
proof.

First, note that since an exogenous shock of type II takes place only in the second period, it does not affect
the costs of electricity in the first period. Consequently, its presence cannot affect the costs and benefits of
differentiation in the first period. Therefore, as in the case of the uncertainty due to learning, it is sufficient
to examine the effects of differentiation for the costs of electricity in the second period.

Next, consider a given technology which does not belong to the set of supported technologies. In the pres-
ence of type II shocks there is some non-zero probability that this technology will receive a large exoge-
nous shock and become the winner in period 2. In this scenario, the winning technology could not benefit
from the learning-by-doing, while the learning of the supported technologies was wasted. Conversely, if all
technologies receive support, then in all possible scenarios the winning technology can benefit from the
learning-by-doing process. Note that models that do not allow for the uncertainty of technological shocks
are unable to capture this mechanism and therefore bias the benefits of differentiation downward.

We summarize the result in the following proposition:

Proposition 3

When learning-by-doing is not feasible then the presence of exogenous shocks of type II (shocks after
learning-by-doing but before the final choice of technologies in period 2) has no effect on the benefits from
differentiation.

When learning-by-doing is feasible, then the uncertainty due to the presence of an exogenous shock of type
II increases the benefit of differentiation.

Proof

As explained in the text the presence of the random shock in period 2 has no effect on the benefits or costs
of differentiation in period 1.

In period 2, the cost of electricity is characterized by the cdf function,F (z), which can be derived as follows:

1− F (z) =
∏
i∈N

P
(
e−η1i−η2i−γ∆i1 > z

)∏
i∈S

P
(
e−η1i−η2i > z

)
=
∏
i∈N

P
(
η2i < − ln

(
zeη1i+γ∆1i

))∏
i∈S

P (η2i < − ln (zeη1i))
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=
∏
i∈N

H
(
− ln

(
zeη1i+γ∆1i

))∏
i∈S

H (− ln (zeη1i))

Nowsuppose that the planner considerswhether to add an economy j to the pool of auctioned technologies.
Let p1 denote the policy with ∆p1 such that ∆j = 0 and p2 denote the policy with ∆p2 such that ∆j > 0.
For the first policy, the expression above becomes

1− F
(
z|∆p1

)
=
∏
i∈Np1

H
(
− ln

(
zeη1i+γ∆1i

)) ∏
i∈Sp2

H (− ln (zeη1i))H (− ln (zeη1j ))

and for the second policy it becomes:

1− F
(
z|∆p2

)
=
∏
i∈Np1

H
(
− ln

(
zeη1i+γ∆1i

)) ∏
i∈Sp2

H (− ln (zeη1i))H
(
− ln

(
zeη1j+γ∆1j

))
Since H must be an increasing function, and since ∆1j > 0, if γ > 0, then F

(
z|∆p2

)
> F

(
z|∆p1

)
at

least for some z > 0. If γ = 0 then F
(
z|∆p2

)
= F

(
z|∆p1

)
. Thus, as in the proof of proposition 1,

E
(
z
∣∣∆p2

)
< E

(
z
∣∣∆p1

)
if γ > 0 and E

(
z
∣∣∆p2

)
= E

(
z
∣∣∆p1

)
if γ = 0.

When there is no uncertaintyEn = max
(
Aie

γ∆i
)
, which does not depend on the number of varieties, that

is there will be no benefit of differentiation.

QED

Importantly, when ∆i1 is endogenized, then the total effect of differentiation (which includes the negative
effect through a deacrease in ∆i1) depends on the shape of the distribution, H . Since the endogeneity
of ∆i1 is already captured in the energy models, we leave the exploration of this case for future research
involving the use of these models.

4 Summary

In public policies there is a consensus that the market itself does not provide the desirable level of energy
from RES, therefore there is a need for public intervention in that area. In recent years, policies of support
for RES deployment show a visible shift from systems based on feed-in-tarrifs, feed-in-premiums or quota
obligations to systems based on auctioning. In the auction system the support is given to those investors
who offer themost competitive bid (lowest price) for a certain amount of energy produced from renewables.

Previous experience of the auctioning system suggests that the crucial determinant of an auction’s effec-
tiveness is its optimal design. There is a set of design options related to supply and demand specification,
the process of selecting winners and contract characteristics, which ultimately determine whether the auc-
tion is successful. However, there is no one-size-fits-all auction design, and in every case it has to be
adapted to specific country conditions.

One of the most important auction design options is technological diversity. On the one hand, technology-
neutral auctions lead to maximum cost-efficiency and high competition, but almost entirely exclude less
mature technologies from the system of support. On the other hand, technology-specific auctions ensure
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diversification of the energymix, but bring the risk of too low competition and overcompensation. Therefore
the choice between technology-neutral and technology-specific auctions represents a significant challenge
for public policies.

The aim of this article was to answer the question of whether governments should support development
of a wide range of different RES, or instead focus on supporting a select few? We show that the answer
depends on the nautre of uncertainty associated with the progress (future costs) of RES technologies. We
divide this uncertainty into two types – uncertainty about the magnitude of the learning-by-doing effect,
as well as uncertainty about the possibility of future technological shocks (random and exogenous to the
capacity of specific technology installed).

Our model shows that in the presence of uncertainty on the learning rate, the more technologies that are
supported, the lower is the expected cost of the winning technology. Because of uncertainty about the
learning-by-doing effect, supporting a wide range of technologies gives a higher probability that there would
appear another, cheaper technology. Therefore the uncertainty on the learning rates increases the benefits
of differentiation.

We find also that the presence of exogenous technological shocks (independent from the learning-by-doing
process) increases the costs of differentiation in the first period. The decision to support a wide range
of technologies instead of supporting only the cheapest technology at a given moment generates costs,
which equates to the surplus of the price of each technology over the price of the cheapest one. However,
this may be beneficial in the next period, as it results in higher probability that the development of the
cheapest technology after the technological shock will not be neglected. Therefore the uncertainty about
the technological shocks increases the benefits of differentiation in the second period.

Our findings may have some implications for policymakers. The countries with potentially large learning
rates, e.g. countries which are at the technological frontier or close to the frontier, should rather increase
differentiation in order to derive benefits from the learning-by-doing effect. Contrary to that, the peripheral
countries, which rely less on the learning-by-doing process (andmore on the adoption of ready technologies
from other countries), should rather limit differentiation and concentrate on supporting only a select few
(cheapest) technologies. This is becausemaking the decisions over the level of support for each technology
after technological shocks rather than before technological shocks would prevent these countries from
bearing the costs of differentiation.
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