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Abstract
The Polish power sector currently stands at a crossroads, facing two alternative pathways. First, the decarbonisation 
pathway with radical CO2 emissions reduction, which involves a fast phase-down of coal. Second, the baseline path-
way that abandons emission reduction targets, and involves a slow coal phase-down. Both pathways are associated 
with risks. The decarbonisation pathway requires large-scale investment in carbon-free technologies in the power 
sector that may crowd out investment in other sectors of the economy. Other risks associated with this pathway 
include the destabilisation of the power system, dependency on imported technologies and job losses in mining. 
The baseline pathway may involve the loss of international reputation, the waste of research and development (R&D) 
resources on coal technologies, and a growing dependency on imported coal. In this report we define the electricity 
mix associated with each pathway and compare their financial and macroeconomic costs using simulation models. 
We also perform a qualitative analysis of the risks that are not captured by the models. We argue that the decar-
bonisation pathway is unlikely to be significantly more costly than the alternative pathway of no reduction targets. 
Some socioeconomic risks of decarbonisation such as a potential fall in employment and increased dependency on 
imported technologies could be mitigated if the government communicates to firms and workers that the scale-down 
of coal sector is inexorable given the global commitment to combat climate change. However, it will be accompanied 
by a simultaneous scale-up of the sector related to carbon-free technologies.
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Overview
Poland cannot significantly reduce its carbon footprint without changing the way it produces electricity. In this report 
we quantify the economic costs and identify the risks associated with a transition of the electricity-generation sector 
away from fossil fuels. We develop a baseline pathway, in which Poland continues to rely on coal, and a decarbonisa-
tion pathway, whereby the coal sector is more rapidly phased down, and compare them using an array of quantitative 
and qualitative tools. We show that the decarbonisation pathway is unlikely to be significantly more costly than the 
baseline pathway. Furthermore, the government could mitigate some of the risks of decarbonisation if it communi-
cates to firms and workers that the scale-down of the coal sector and the scale-up of the sector related to carbon-free 
technologies are inevitable.

As can be seen in Fig. O.1, the decarbonisation pathway will involve higher costs than the baseline pathway. How-
ever, the overall cost for the economy will be small, and furthermore, as shown in Fig. O.2, in the decarbonisation 
pathway the electricity sector will emit half the CO2 than that of the baseline pathway by the middle of the century. 
The main difference between the pathways is the elimination of coal and lignite power plants under decarbonisation, 
although coal will continue to be used for combined heat and power plants. Furthermore, investment in costly biogas, 
biomass, and photovoltaics is significantly higher for the decarbonisation pathway. Both pathways predict a similar, 
increasing level of investment in onshore wind power and the introduction of nuclear power. 

Figure O.1. Cumulated cost of electricity  
generation 2015–2050

Figure O.2. CO2 emissions in the  
electricity-generation sector
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Source: Output of the MOEM model.

Despite the significant investment required to achieve decarbonisation of the electricity sector, the cost for the entire 
economy is small, and, what is more important, transitory. The total capital and operating expenditure is 14% higher for 
the decarbonisation pathway, but it is important to note that it is spread over a period of 30 years and that this sector 
accounts for a small part of the economy. The drop in gross domestic product (GDP) reaches a maximum of 0.6% rela-
tive to the baseline due to a crowding-out of investment in the remaining sectors. The decline in household consumption 
follows a similar pattern and reaches a maximum of 1%. Finally, the increase in the unemployment rate would not exceed 
0.1 percentage points. The highest deviation of these macroeconomic indicators would take place in the 2040s, and 
towards the middle of the century we predict that they would return to the baseline value. A macroeconomic analysis 
is also conducted for differing assumptions regarding future prices of emission permits, technology costs, and other 
constraints on technological preferences. All results point to a shallow and transitory economic slowdown.  
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In addition to the general macroeconomic study, we conduct an analysis of other risks and issues that are linked to the 
baseline and decarbonisation pathways using tailored quantitative and qualitative methods. These risks are the following.

Forgoing decarbonisation may lead to a loss of international reputation due to the fact that climate change and 
decarbonisation are important issues at both the EU and global levels. This can impede Poland’s ability to create po-
litical alliances and partnerships, primarily within Europe, including in areas that are outside of the climate and energy 
agenda, such as economic, agricultural, or trade policies. 

Continuous reliance on coal might also pose a threat for energy security and economic growth in the long run. This 
is contrary to the popular belief that Poland has rich coal reserves that are economically viable. Poland is facing in-
creasing coal production costs, and attempts to restructure the coal sector have only been partially successful, thus 
resulting in increased demand for imported coal. A part of the demand for coal will be met by imports from Russia, 
and since it already supplies Poland with a large quantity of oil and gas, dependence on one country as a supplier of 
energy might pose a threat to the stability of energy supply. Energy security could be preserved if the costs of coal 
extraction in Poland go down or if the energy mix becomes more diversified.

Opting for a coal-based energy system will require significant spending on R&D to increase the efficiency of both coal 
mining and electricity generation. The benefits from coal-related R&D will probably be limited as the global shift to 
alternative energy sources becomes more pronounced. The accumulated knowledge and know-how related to the 
coal-mining and coal power plant sector would only contribute to overall economic growth through spill-over effects 
if these technologies continue to be utilised long into the future. However, there is a high probability that globally coal 
will lose the race against other energy sources, therefore investing in other technologies is probably more beneficial 
for the economy, especially in the long run.

Increasing the share of intermittent renewable energy sources, especially from wind turbines, does not pose a threat 
from the point of view of rising system costs and energy security. Under decarbonisation, coal will be replaced by 
a mix of wind and gas turbines, which is only slightly more expensive than coal generation. The gas turbines need only 
be turned on sparingly during peak energy demand or when there is insufficient wind power, so that additional gas use 
does not exceed 15% of Poland’s total use. Faced with the alternative of importing coal and the recent diversification 
of gas imports, this does not seem to threaten the stability of energy supply. Pushing for a low to medium share of 
renewable generation results in a levelised cost of electricity increase of up to 8.1%. 

It is unlikely that switching to renewable energy sources would result in technological dependency on foreign technol-
ogy and manufacturers. In the case of offshore wind technology, currently the domestic industry can be responsible for 
50% of the value chain in wind turbine production, and with a supportive government policy this share could reach 70%. 
Furthermore, Poland has the potential to develop technological niches which could provide specialised RES components. 

Decarbonisation does not necessarily imply a significant decline in employment due to laying off a large number of 
working-age workers in the mining sector. We show that natural attrition resulting from transitions to retirement are 
roughly consistent with the drop in the demand for coal under the decarbonisation of the economy. Furthermore, coal 
miners should have ample opportunities to find employment in the construction sector, which requires workers of 
similar education and experience levels. This is especially true for the Silesia region, where the majority of miners are 
employed and which currently boasts low unemployment .

When choosing a pathway, policy-makers need to take into consideration public acceptance issues, both at the local 
and national levels. The most contested issues are high-voltage transmission lines; the construction of new coal 
mines, especially open-pit lignite mines; and renewable energy system installations such as onshore wind turbines. 

Political will is also a crucial element for fostering decarbonisation of the energy system. It is closely linked to gen-
eral public opinion on this issue, but the direction of this effect is not entirely clear due to the possibility of reverse 
causality. While public opinion influences the political debate, the political debate simultaneously influences public 
opinion. We argue that political parties tend to promote environmental issues in times of low inequality and when 
the economy is expanding. Political will can also be influenced by well-organised stakeholders such as coal-mining 
trade unions.
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Introduction
The Polish power sector stands at a crossroads, facing different pathways with contrasting CO2 emission reduction 
ambitions: the decarbonisation pathway, which sets ambitious emission reduction targets, and the baseline pathway, 
which abandons emission reduction targets. The decarbonisation pathway would involve fundamental changes in 
the structure of production of the power sector compared to the baseline pathway. Such a radical structural change 
may involve costs for both the economy and society, especially because it entails a phase-down of the coal-mining 
sector, which employed 94,000 workers in 2015. On the other hand, the baseline pathway would prevent Poland from 
contributing to global efforts to mitigate climate change. As with other countries (Hess et al., 2018), a heated debate 
has emerged in Poland between the advocates of each alternative.

The primary purpose of this report is to examine the evolution of the power sector and the economy under the 
decarbonisation and the baseline pathways and assess the risks associated with each one. We also determine the 
conditions under which these risks can be amplified or avoided. 

We show that the macroeconomic costs associated with the decarbonisation pathway are not significantly higher 
than the costs associated with the baseline pathway, according to simulation models. Both pathways are associated 
with risks that cannot be captured by models, such as the loss of international reputation under the baseline pathway 
or the inability of workers from the mining sector to find employment in other sectors under the decarbonisation 
pathway. The risks associated with decarbonisation are manageable; however, they urgently require the preparation 
of a consistent strategy to enact the necessary changes in the power sector and the related sectors.

Our analysis is divided into three parts. In Part 1, we predict the evolution of the electricity mix under each pathway 
and investigate the macroeconomic costs of these evolutions using simulation models. Specifically, in this step we 
employ a bottom-up model of the optimal electricity-generation mix and a macroeconomic Dynamic Stochastic Gen-
eral Equilibrium (DSGE) model. The bottom-up model predicts the cost-minimising electricity mix with and without 
constraints on emissions. It also enables a comparison of the costs of generating electricity under the two pathways. 
The general equilibrium model examines the relative socioeconomic consequences of adopting the mixes under each 
pathway, including the effects on GDP, aggregate consumption, unemployment, and wages. We also explore how 
the results of the standard economic analysis change when we alter the assumptions on some of the parameters, 
namely technological costs, emission permit prices, and the availability or social acceptance of nuclear power. The 
two models allow us to define the electricity mix associated with each pathway and estimate their costs. We abstract 
from the question of which policy tools (e.g. RES auctions or feed-in tariffs) could be used to implement the pathways 
in the most efficient way.

The results of this part of the analysis suggest that the least-cost pathway under the constraint of the threefold reduc-
tion in emissions involves a gradual replacement of coal with a mix of onshore wind, nuclear, natural gas, biogas, and 
biomass. The baseline pathway is associated with larger aggregate consumption than the decarbonisation pathway, 
but the difference is modest.

In Part 2, we identify and discuss several risks that are omitted from the analysis in the first step due to the limitations 
of the models. We investigate three such risks associated with the baseline pathway:

¨¨ the loss of international reputation

¨¨ the waste of R&D resources on coal technologies

¨¨ dependency on imported coal
and three risks associated with the decarbonisation pathway:

¨¨ the loss of energy system stability

¨¨ dependency on imported technologies

¨¨ decline of employment
Each risk is explored using tailored tools such as analytical models, dedicated quantitative models, interviews with 
relevant stakeholders, and value chain analysis. We also employ the Fuzzy Cognitive Mapping method to illustrate 
the potential consequences of the two pathways via a graphic showing cause-effect relationships that link policies 
with economic growth.
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The report argues that the risks associated with decarbonisation could be mitigated if the government takes on a co-
ordinating role for managing the changes in the power sector and related sectors. In particular, the risks of decline 
in employment could be mitigated if the government communicates to firms and workers that the scale-down of the 
coal sector is inexorable given the global commitment to combat climate change. Similarly, the risk of dependency on 
imported coal could be reduced if the government commits to decarbonisation and communicates to firms that the 
sectors related to carbon-free technologies will scale up in the near future. Similarly, the stability of the energy system 
could be preserved by implementing an appropriate electricity mix.

In Part 3, we examine implementation risks, i.e. potential obstacles to the implementation of the decarbonisation 
pathway. We focus on the lack of support for the pathway by three groups of stakeholders: experts, citizens, and 
politicians. We explore these risks by conducting a survey of experts, reviewing literature on citizens’ support for 
energy-related investment, and performing econometric regressions that explain when parties talk about climate and 
environmental issues. 

The results suggest that experts seem to understand the need for decarbonisation. However, the lack of strong 
support among the major political parties for the ambitious emission reduction targets as well as the opposition of 
citizens towards RES installations in their neighbourhood might pose an important obstacle to the implementation of 
the decarbonisation pathway.
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PART 1

Electricity mixes and their 
macroeconomic implications  
– model simulations
MAREK ANTOSIEWICZ AND JAN WITAJEWSKI-BALTVILKS

In this part we define the electricity mix associated with the baseline and decarbonisation 
pathways and compare their financial and macroeconomic costs using simulation models. 
To do so, we employ a bottom-up model of the optimal electricity-generation mix and a mac-
roeconomic Dynamic Stochastic General Equilibrium (DSGE) model. We also explore how the 
results of the analysis change when we alter the assumptions on some of the parameters, 
namely technological costs, emission permit prices, and the availability or social accept-
ance of nuclear power.



1. Definitions and methodology

1.1. Defining the key concepts
In this report we will evaluate two distinct pathways for the Polish economy, which we shall name the baseline path-
way and the decarbonisation pathway.

We define the baseline pathway as the path that would be chosen if the objective was to minimise energy system 
costs under the given set of economic and technological constraints. We assume that such a choice takes into 
account the expected evolution of costs of technologies as predicted in Hand et al. (2017), the growth in prices of 
emission permits under the ETS from €5/tCO2 in 2017 to €80/tCO2 in 2050, and the limited availability of resources. 
Although the emissions tax is taken into account, no limits on total emissions from the power sector are assumed.

By decarbonisation pathway we mean the path that would be chosen under the same assumptions and with the same 
objective as those stipulated in the baseline pathway, i.e. the minimisation of energy system costs, but with the addition-
al constraint of a threefold reduction in emissions from the power sector: from 137mln t in 2015 to 45mln t in 2050.

By risk, we mean the possibility that a phenomenon, action, or policy, whose outcome is uncertain, may result in 
bringing adverse consequences for economic, social, or cultural assets. Although in this study we focus on economic 
risks, we also aim to identify and discuss the most important risks that are not directly connected to the economy, 
such as the loss of international reputation.

1.2. The toolbox

1.2.1. MODEL OF OPTIMAL ENERGY MIX (MOEM)

VERSION OF THE MODEL

The structure and the original calibration of this model was developed by the Department of Strategic Analysis within 
the Chancellery of the Prime Minister (Klima et al. 2015). The model’s code, the original data files used for calibration, 
the user interface, examples of basic simulations, and a detailed description of how it works is available online.1

For the purpose of this study, we used the original structure of the model; however, we recalibrated it somewhat. 
Specifically, we:

¨¨ updated the current level and expected evolution of costs of onshore wind, offshore wind, and solar photovoltaic 
(PV) technologies using the 2017 Annual Technology Baseline prepared by the National Renewable Energy Lab-
oratory (Hand et al., 2017);

¨¨ assumed that the level of domestic gas resources available for use in the power sector is limited to 10 bln m3 (see 
the Appendix for a detailed explanation of this value);

¨¨ assumed that the cap on imports of gas for use in the power sector is limited to 7 bln m3 per year (see the Appen-
dix for a detailed explanation of this value);

¨¨ assumed that emissions from biofuels do not count towards the overall emission limit – for instance, emissions 
from biomass are offset by the future negative emissions from land use; and

¨¨ changed the emission reduction targets in order to explore more ambitious targets (see Section 1.1).

1  www.premier.gov.pl/wydarzenia/aktualnosci/model-optymalnego-miksu-energetycznego-dla-polski-do-roku-2060-0.html
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The remaining parameters are the same as in the analysis by Klima et al. (2015). In particular, we assume the same 
cost parameters for coal-based electricity, biomass, biogas, and nuclear. Following Klima et al. (2015), we assume 
that imports enable an increase in power available to the system. However this power cannot be larger than 1.8GW.

Due to the changes in the calibration, the output of the model differs from that obtained by the team at the Depart-
ment of Strategic Analysis.

THE PURPOSE AND SCOPE OF THE MODEL

The MOEM solves the optimisation problem for a planner aiming to minimise total energy system costs, including 
both capital expenditures (CAPEX) and operating expenses (OPEX), under a set of physical, economic, and techno-
logical constraints. The output of the model represents the evolution of the electricity mix, the power mix, use of 
resources, and emissions from 2015 until 2050.

The model takes into account several factors, including:

¨¨ the evolution of costs for key electricity-generating technologies

¨¨ the availability (with the annual resolution) of domestic resources and caps on imports

¨¨ the possibility to construct new coal mines, including lignite mines

¨¨ the time required for the construction of mines and power plants

¨¨ growth in annual demand for electricity 

¨¨ changes in demand for electricity across hours and days over a year

¨¨ the demand for heat in the heating network connected to CHP plants

¨¨ the evolution of EU emission allowances (EUA) prices.

MODEL LIMITATIONS

The model has three main limitations:

¨¨ It does not explicitly take into account the intermittency of renewable energy sources, but rather addresses this 
factor through a simplified distribution. We discuss this issue in detail in Section 5.1.

¨¨ It assumes that the evolution of costs of technologies is exogenous. 

¨¨ It assumes that the demand for electricity is exogenous.

1.2.2. MACROECONOMIC MITIGATION OPTIONS MODEL

PURPOSE AND SCOPE OF THE MODEL

The MacroEconomic Mitigation Options (MEMO) model is a multi-sector DSGE model that simulates the dynamics of 
an economy, in this case the Polish economy. It assumes that a representative firm in each sector produces its output 
using four inputs: capital, labour, energy, and materials, with the possibility of substituting one input with another. 
For instance, after an increase in the price of energy, firms may choose to switch to a more capital-intensive and 
energy-saving form of production.

The output of each firm can (i) be used as material by a firm in another sector, (ii) constitute a component of an 
investment project undertaken by another firm, (iii) be purchased by households for consumption, (iv) be purchased 
by the government, or (v) be exported (Figure 1.1.). For instance, the output (goods and services) delivered by the 
construction sector will primarily be utilised as a component of investment projects undertaken in other sectors, while 
the output of the education sector will be a component of public and private consumption. 
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Figure 1.1. Interactions between economic agents in the MEMO model

Source: IBS. 

The choices of firms are determined by a desire for intertemporal profit maximisation, which implies that firms take 
into account not only the current state of the economy but also expectations about the future. This is particularly 
important when firms make decisions about investment and hiring – if a firm expects high demand in the future, it is 
more willing to undertake investments and hire workers than a firm expecting an economic slowdown.

When firms choose their inputs and outputs, they take all prices (including the price of their own outputs) and wag-
es as given. This means that the economy can be described as sets of choices of inputs (demand) and choices of 
outputs (supply) as a function of prices. For instance, an increase in the price of construction will involve a drop in 
demand for construction by other sectors and an increase in supply by construction firms. We assume that, at each 
point, the economy is in a state of equilibrium: prices are such that supply and demand are balanced and market 
clearing occurs.

The state of equilibrium has important consequences for the dynamics of the economy. For instance, a large-scale 
investment project in the energy sector that raises the demand for construction will lead to an increase in the price of 
construction goods to ensure that demand is met by supply. However, an increase in the price of construction goods 
may lower the profitability of investment projects in other sectors, and this may in turn slow down the accumulation 
of capital and lead to lower output from these sectors in the future.

An important component of the MEMO model is the labour market module. This module is built on the framework of 
search and matching, which is frequently used in modern macroeconomic models to study the dynamics of unem-
ployment. The framework assumes that, in every period, an unemployed worker faces some probability of being em-
ployed in the following period. This probability is a function of the number of vacancies and the number of job seek-
ers. An increase in demand for workers (e.g. due to additional demand generated by a large-scale investment project) 
will increase both the number of vacancies and the probability of finding a job, and will thus reduce unemployment.
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BOX: THE MEMO TOOLBOX – WEB APPLICATION

The MEMO model is available for anyone to use via the MEMO Toolbox web application. Lay users can assess the 
macroeconomic consequences of implementing climate-change mitigation policies in three countries: Chile, Greece, 
and Poland. Through a user-friendly interface, users can easily conduct simulations by providing input data (e.g. 
changes in taxes, investment plans) and analyse the results (e.g. on GDP, consumption, investment, taxes, export/
import, employment) through built-in visualisation tools or export them to a spreadsheet. The application can address 
several questions, such as: 

¨¨What effect would a carbon tax have on unemployment and wages in different sectors? 

¨¨ How would a reduction in the PV installation costs affect energy prices, energy demand, and GDP?

¨¨What effect would feed-in tariffs for PV have on industrial output (when combined with a bottom-up analysis)?

The models contained within the toolbox have been used in the past to assess the socioeconomic cost of decarbonis-
ing the Polish electricity-generation sector and to help assess the consequences of carbon taxation in Chile on energy 
poverty. The MEMO models were developed at the Institute for Structural Research (IBS) by Marek Antosiewicz and 
Jan Witajewski-Baltvilks as part of the TRANSrisk project.

More materials:

¨¨MEMO Toolbox application and manual -> www.transrisk.ibs.org.pl

¨¨ Examples of use -> www.ibs.org.pl/research/transrisk/ 
Source: IBS and www.transrisk-project.eu/. 

MODEL LIMITATIONS

The model does not take into account the rigidity of wages at the sectoral level: wages are free to adjust to any 
change in demand. For instance, according to the model, a drop in demand for miners will cause a large decrease 
in miners’ wages. This has important consequences for the dynamics of unemployment. Downward adjustment of 
wages implies that the drop in the number of vacancies is smaller than would be the case if such adjustments were 
impossible. This, in turn, translates into a smaller increase in unemployment. In other words, if our assumption does 
not hold and sectoral wages cannot freely adjust, then the MEMO model will underestimate the increase in unemploy-
ment due to a reduction in demand in the mining sector. We discuss this issue in more detail in Section 5.3.

The model, in addition, does not take into account the potential barriers of entry to the RES technology market for 
domestic firms. In the current set-up, we assume that RES installation requires the same participation of domestic 
firms as an average investment project in the Polish economy. If this assumption fails, e.g. because almost all com-
ponents of RES installations are produced abroad and Polish firms do not have any chance to compete in this market, 
the decarbonisation scenario will have a larger impact on imports. We discuss this risk Section 5.2.

Another important limitation of the model is that it does not account for the effect of structural change on the direc-
tion of R&D efforts and their effect on the growth of the economy. Despite some attempts to endogenise technolog-
ical change in the literature (Acemoglu, 2012), this problem cannot be fully solved in economic models due to the 
absence of equilibrium under perfect competition (see Acemoglu, 2007 for a more detailed discussion). We discuss 
this issue further in Section 4.3.
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1.2.3.  INTEGRATION OF THE TWO MODELS

There are three outputs of the MOEM model that are used as inputs in the MEMO model:

¨¨ Changes in the use of fossil fuels: gas and coal (oil is not used in the Polish power sector).

¨¨ Energy system costs, calculated as the sum of capital expenditure and operational expenditure divided by the 
amount of electricity produced.

¨¨ Capital expenditure.
In general equilibrium simulations, the demand for electricity predicted by the MEMO model may be different to the 
demand for electricity assumed in the MOEM model because the MOEM model does not take into account that an 
increase in electricity prices will cause a reduction in the demand for electricity. To address this problem, we have 
scaled the changes in the use of fossil fuels and changes in capital expenditure within the MEMO model by the 
resulting ratio of the simulated demand for electricity and the steady-state demand for electricity.2 For instance, if 
the MEMO model predicts that an increase in electricity prices in the decarbonisation pathway will lead to a drop in 
electricity demand by 10%, capital expenditure and changes in resource use predicted by the MOEM model will be 
scaled by a factor of 0.9 in the MEMO model.

2. Core electricity mixes
In this section we analyse the economic costs of the transition of the electricity-generation sector in two alternative 
pathways. We develop a decarbonisation pathway, which assumes a 70% reduction of CO2 emissions in the power 
sector, and a baseline pathway, which abandons emission reduction targets. We compare them using a standard 
economic toolbox: a bottom-up, optimal electricity mix model (the MOEM model) and a general equilibrium model of 
macroeconomic dynamics (the MEMO model). In Section 2.1 we employ the MOEM model to predict the evolution 
of an electricity mix that minimises the costs of electricity generation in each pathway by 2050. We also compare 
the investment and operational costs of the two pathways. In Section 2.2 we analyse the economic consequences 
of following the decarbonisation pathway instead of remaining on the baseline pathway. We conclude this section by 
highlighting the strengths and limitations of the models used in our analysis.

2.1. Optimal electricity mixes

2.1.1. THE BASELINE PATHWAY

In the first part of this section, we present the simulations of the baseline pathway. This pathway mini-
mises energy system costs under the assumption of a growth in EUA prices. No other constraints 

regarding allowed emissions are imposed. The pathway incorporating these criteria according to 
the MOEM model (see Section 2.2.1 for a breakdown of the assumptions used in the model) is 

shown in Figure 2.1.

2  More precise estimates would be obtained if we used the new electricity demand estimated by the MEMO model in the second round of the 

MOEM simulations and then reiterate the simulations. We could not apply this procedure in this study, however, owing to the significant time 

requirement for each computation of the optimal pathway by the MOEM model.

In the baseline  
pathway the share of coal 
in the electricity mix would 

decrease, but only after 2030. 
It will decline to 33% in 2050 

(from 83% in 2015).
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Figure 2.1. Optimal electricity mix in the baseline scenario
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Source: Output of the MOEM model.

Until 2030, there is very little change in the electricity mix. There is a relatively small decrease in the share of coal and 
a moderate increase in onshore wind. The simulation also suggests that biogas, which is absent at the beginning of the 
analysed period, achieves a noticeable share by 2030. The contribution of other sources does not change significantly.

The 2030s start with a rapid drop in lignite due to the depletion of currently used mines; a similar drop is predicted in 
all scenarios considered. Lignite is initially replaced by hard coal (usage of which increases from 39mln t in 2020 to 
52mln t in 2030) and later by gas (usage increases from 1.3bln m3 in 2030 to 7.2bln m3 in 2040). 

Between 2032 and 2035, the completion of a nuclear power plant construction leads to a tectonic drop in the share of hard 
coal, from 51mln t to 36mln t. The reason why coal cannot compete with nuclear energy is the high price of EUA after 2030. 
Since coal power plants need to purchase permits to continue production, their operational costs are relatively high.

The last period of the analysis, between 2035 and 2050, features an increase in the share of RES, in particular onshore 
wind. This can be explained by the decline in RES costs (Hand et al., 2017).

There are several general observations to make regarding the baseline pathway. First, the optimal solution under the 
assumption of growing EUA prices predicts a significant fall in the share of coal. Second, despite the large drop in 
installation prices of onshore wind predicted in Hand et al. (2017), this source does not play a major role until the late 
2030s. Third, under the assumption of nuclear costs at the level of 25.8mln PLN (6mln EUR) per MW, nuclear elec-
tricity enters the mix in the baseline pathway. However, it is not available before 2035, due to the long construction 
time needed. Fourth, some sources (solar, offshore) never enter the mix, even though we assume a sharp decline in 
associated costs following the reference scenarios projected by Hand et al. (2017).

2.1.2. THE DECARBONISATION PATHWAY

In this section we present the simulations of the decarbonisation pathway, i.e. the pathway that would be chosen by 
a benevolent planner with exactly the same objective as in the baseline (the minimisation of energy system costs) 
and under the same assumptions as in the baseline, but with the additional constraint that the planner commits to 
a threefold reduction in emissions from the power sector.

The decarbonisation pathway obtained from the simulations (Figure 2.2) can be divided into several phases.
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The first phase (until 2022) features a moderate decline in the share of coal. The use of electricity 
originating from coal combustion decreases from 98TWh in 2020 to 94TWh in 2025, and coal is 

replaced by onshore wind and biogas. Another noticeable element of this phase is the temporary 
replacement of coal with gas in cogeneration of electricity and heat (CHP). The simulation 
also predicts a large-scale replacement of electricity from lignite with electricity from hard 
coal, although this prediction needs to be treated with caution. Government plans for lignite 
assume a continuation of production without significant changes until 2030. These plans 
could be revised in the medium term, although immediate adjustment is unlikely. Furthermore, 

although doubling the consumption of hard coal could theoretically be achieved by an increase 
in imports, such a scenario is not likely to be accepted by policy-makers due to concerns about 

the potential loss of energy security.

Figure 2.2. Optimal electricity mix in the decarbonisation scenario
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Source: Output of the MOEM model.

The second phase, between 2022 and 2032, features a more rapid drop in the consumption of coal. This drop is en-
abled by an increase in generation of electricity from onshore wind, biofuels, and natural gas. As later discussed, the 
increase in biomass and natural gas is temporary.

Between 2032 and 2040, the completion of a nuclear power plant causes a further reduction in demand for coal. 
Nuclear power also enables a reduction in the use of natural gas and biomass. The construction of new onshore wind 
plants is restrained. In fact, the production of electricity from onshore wind declines due to the depreciation of older 
wind turbines.

In the last phase, we can witness fast growth of onshore wind and solar photovoltaics (PV). In 2050, onshore wind 
becomes the second biggest source of electricity, after nuclear, and its share reaches 20%.

Again, we can make some general observations about the evolution of the mix in the decarbonisation pathway. First, 
the decline in the use of coal is significantly stronger in the decarbonisation scenario. At the end of the analysed 
period, coal is used only in CHP plants generating electricity together with steam, which is used later in the heating 
networks. Second, the decline is more gradual compared to the baseline scenario, which implies that the transition of 
factors of production, notably labour, from the mining sector to other sectors may be less abrupt than in the baseline 
scenario. We discuss this in more detail in Section 5.3. Third, natural gas and biomass could be used as a transition 
fuel, thus enabling a reduction in emissions until the nuclear plant is completed. Finally, PV, biogas and biomass have 
a significant share in the electricity mix at the end of the analysed period, in contrast to their negligible share in the 
baseline pathway. Consequently, the mix in the decarbonisation scenario is more diversified.

In the decarbonisation 
pathway the share of coal in 

the electricity mix would start 
to decrease in 2020.  

It will decline to 12% in 2050 
(from 83% in 2015).
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2.1.3. COMPARISON OF ENERGY SYSTEM COSTS AND CO2 EMISSIONS UNDER THE TWO 
PATHWAYS

The capital (CAPEX) and operational (OPEX) expenditures required by the energy system under 
the two pathways are presented in Figure 2.3. Both pathways involve a peak in capital expend-
iture between 2025 and 2035, which is necessitated by the construction of a nuclear power 
plant. In the 2020s, CAPEX in the decarbonisation scenario is larger due to the construction 
of RES installations and gas power plants. The difference in CAPEX between the two path-
ways in the 2030s and 2040s stems from the timing of the construction of onshore wind 
capacity: the fast growth of that capacity in the baseline scenario starts in the mid-2030s, 
while in the decarbonisation pathway it is delayed until the early 2040s. Since the growth of 
onshore wind capacity in the decarbonisation scenario is much faster, the CAPEX eventually 
becomes much larger than in the baseline scenario.

Figure 2.3. CAPEX and OPEX required by the energy system in the two pathways
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Source: Output of the MOEM model.

The OPEX projected in Figure 2.3. includes fuel, operation, and maintenance costs for all plants, as well as the total 
costs of EUA. Initially the OPEX costs of the two pathways do not diverge. While the baseline pathway involves a larg-
er use of coal and larger purchases of the EUA, the decarbonisation pathway requires a significant use of biomass, 
biogas, and natural gas. The difference between the two pathways becomes clear only in the 2030s, when EUA prices 
are very high.

The 
decarbonisation 

pathway will involve 
higher costs than the baseline 
pathway, but decarbonisation 
would result in the electricity 

sector emitting half the quantity 
of CO2 than that of the 
baseline pathway by 

2050.
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Figure 2.4. Cumulated cost of electricity  
generation 2015–2050

Figure 2.5. CO2 emissions in the electricity-generation 
sector 
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Source: Output of the MOEM model.

Figure 2.4 represents the cumulated cost of generating electricity under the two pathways in the period 2015–2050. 
The cost was obtained by computing the total cost of the system (summing CAPEX and OPEX) in each year and 
summing for the period 2015–2050. Electricity under the decarbonisation pathway would be 13.6% more costly than 
under the baseline pathway. In the next subsection we demonstrate that this difference would not have any major 
consequences for the economy.

The level of annual emissions under the two pathways is presented in Figure 2.5. The evolution of emissions under 
the decarbonisation scenario was imposed by an exogenous assumption that defines the decarbonisation pathway 
(see Section 1.1). The evolution of emissions under the baseline pathway is an output of the model. 

The reduction in emissions in the baseline pathway is small and delayed compared to the decarbonisation pathway. 
Until 2030, emissions stay at a roughly constant level. After 2030 they decrease significantly only due to increasing 
EUA prices and falling RES prices. In 2050 the level of emissions is at approximately the same level as the level of 
emissions in the decarbonisation pathway in 2030.

2.2. Macroeconomic implications
In this section, we present the macroeconomic consequences of the switch from the coal-dependent 

baseline to a decarbonisation pathway predicted by the MEMO model. Figures 2.6–2.9 show the 
evolution of key macroeconomic indicators in the decarbonisation pathway relative to the base-

line. The results show a deviation from the baseline growth path: the points above zero on the 
y-axis imply that the variable takes a larger value in the decarbonisation pathway than in the 
baseline pathway, while the points below zero imply the opposite. 

The cost of 
decarbonisation of 

the electricity sector for 
the entire economy is small 
and transitory (despite the 

significant investment 
required).
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One direct consequence of the switch to the decarbonisation pathway is an increase in investment in the energy sec-
tor (Figure 2.6). This variable reflects the difference in CAPEX between the two pathways scaled by GDP. On average, 
the investment required in the decarbonisation scenario is larger by 0.5% of the baseline GDP, although the difference 
clearly fluctuates over time.

Investment in the energy sector crowds out investment in other sectors of the economy. This effect is illustrated in 
Figure 2.6. While an increase in investment in the energy sector leads to an increase in total investment levels, the 
latter increase is smaller and delayed. The difference between energy-sector investment and total investment must 
be compensated for by a drop in investment in other sectors of the economy. The reason behind this crowding-out 
is an increase in the price of goods necessary for investment. Decarbonisation-related investments increase the 
demand for construction and the output of the industrial sectors. The price of those goods increases and, conse-
quently, investments in other economic sectors become more costly. This implies that fewer investment projects are 
undertaken in other economic sectors.

Figure 2.6. The difference between the decarbonisation and baseline pathways in terms of total investment and 
investment required in the power sector
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Source: Output of the MEMO model.

A drop in investment leads to a drop in output in most sectors in the medium term (Figure 2.7). The largest decline 
takes place in services (a drop by 0.3% of the baseline GDP). A similar pattern, although with smaller amplitude, can 
be observed for almost all other sectors, though industry and construction are exceptions. The output of these two 
sectors must increase in order to meet the demand of an increase in total investment.
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Figure 2.7. The difference between the decarbonisation and baseline pathways in terms of value added in the main 
sectors of the economy
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Source: Output of the MEMO model.

The total effect of a switch to the decarbonisation pathway is a modest drop in output and con-
sumption per capita (Figure 2.8). The difference between the two scenarios is greatest in the late 

2020s and late 2040s, i.e. the periods when investment requirements in the decarbonisation 
scenarios are highest. In these periods we can also observe that the drop in consumption is 
deeper than the drop in GDP, as larger investments in this period imply that a smaller share 
of GDP can be devoted to consumption. However, the scale of the drop in consumption ap-
pears to be insignificant. In the late 2040s, consumption is 1% lower than in the baseline. For 

instance, if we assume growth in consumption in the baseline scenario will be at an annual 
rate of 3%, then the average annual growth rate in the decarbonisation scenario would be 2.97%.

The total effect of 
decarbonisation on GDP 

decrease and unemployment 
increase is negligible.
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Figure 2.8. The difference between the decarbonisation pathway and baseline pathways in terms of GDP  
and consumption
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Source: Output of the MEMO model.

 
Slower GDP growth translates into lower demand for labour and increased unemployment. However, the effect may 
be considered small: the peak unemployment would appear in the late 2040s and the effect would be less than 0.1% 
point above the baseline (see Figure 2.9).

Figure 2.9. The difference between the decarbonisation and baseline pathways in terms of unemployment rate
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2.3. Strengths and limitations of the methodology
The simulations presented in Section 2.2 have a dual purpose. First, they expose the causal mechanism linking the 
adoption of a decarbonisation strategy and the reductions in GDP and consumption. Second, they generate an esti-
mate of the expected economic loss associated with the decarbonisation pathway. 

The result of the positive cost of decarbonisation was obtained by the construction of our research design: we defined 
our baseline as the pathway that minimises electricity system costs, and thus any additional constraint on the system 
(including emission reductions) that alters the mix in this pathway must result in higher electricity costs. From a mac-
roeconomic perspective, higher power-generation costs imply that more resources must be used in the electricity 
sector, resulting in less resources being available to other sectors. This loss of efficiency in use of resources must 
inevitably lead to a drop in consumption. This result is independent of the model structure or any calibration of the 
parameters. In fact, the economic loss from imposing an environmental constraint will be predicted by any neoclas-
sical or equilibrium model that assumes optimisation of agents and complete market clearance (Nikas et al., 2018a). 

The conclusion that imposing environmental constraints causes economic loss relies on the assumption that there 
are no externalities from the behaviour of firms, that markets are perfectly competitive, and that consumers and firms 
are rational. The externalities arise when firms do not consider all of the social costs and benefits of their decisions. 
For instance, if emissions by an energy company result in a loss of international reputation and this is not taken into 
account in decision making, the firm generates an externality. If large externalities arise in the real world, the optimal 
pathway indicated by standard economic models that ignore externalities will be different from the truly optimal 
pathway from a social point of view. Similarly, if markets are not competitive (e.g. wages cannot freely adjust) or if 
agents are not assumed to display optimisation behaviour, standard economic models can give wrong predictions. 
We investigate some of these issues further in Part 2.

In addition, the results rely on the assumption that the parameter values assumed in the models are correct. For in-
stance, if coal-fuelled electricity costs are miscalculated, the least-cost pathway may not feature a moderate decline 
in coal consumption. Similarly, the difference in costs of the two pathways can be biased if the model wrongly esti-
mates the costs associated with the least-cost pathway under the environmental constraints. In the following section 
we perform various simulations based on alternative assumptions on the key parameters. 

3. Alternative electricity mixes
In this section we show what the outcomes of the analysis of the baseline and decarbonisation pathway are under al-
ternative scenarios for the evolution of EUA prices, intermittent renewable energy costs, and the availability of nuclear 
technology. This exercise is motivated by the following considerations. First, it enables us to construct a narrative on 
how the different pathways may evolve under various circumstances. Second, the range of results demonstrates the 
level of uncertainty that is associated with model outcomes and should be considered in decision making. Third, the 
additional results inform decision making about the level of sensitivity of the modelling results presented in Section 
2 towards changes to specific parameters.
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3.1. Low EUA prices
In this section we examine the outcomes of the MOEM and MEMO models under the assumption 
that EUA prices will stay at a very low level. Following the assumption in the baseline simula-
tions prepared in Klima et al. (2015), we assume that the permit price for 1t of CO2 will be €7 in 
2030 and will grow to the level of €10 in 2050 (compared to the assumptions of €30 and €80 
respectively, as discussed in Section 2).

Interestingly, the MOEM model simulations suggest that, despite the low ETS prices, the share 
of wind in the baseline energy mix (without emissions constraints) is very close to that in the 
decarbonisation scenario. This finding implies that onshore wind technology will become com-
petitive even when ETS prices are low. However, fast diffusion of this technology in the baseline path-
way will not start before the 2040s. Onshore wind is the only renewable with a significant share in 2050.

A noticeable feature of the baseline pathway under low EUA prices is the substantial growth in coal use. This 
increase is associated with the total absence of nuclear energy, which entered the energy mix in 2030s in the 
high-price scenario. 

As expected, the decarbonisation pathway appears to be similar under the two ETS price level scenarios, the replace-
ment of emission-intensive fuels is necessitated by the emission constraints, and emission prices have only a very 
small impact on the optimal solution.

Figure 3.1. The optimal electricity mix under the baseline (left) and decarbonisation (right) pathways, assuming low 
EUA prices
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Source: Output of the MOEM model.

The simulations that assume low ETS prices predict a large difference in the CAPEX required in the two pathways, 
which is mainly driven by the creation of nuclear power capacity and larger-scale deployment of RES in the decar-
bonisation pathway.

The prices of emission 
permits will significantly 

influence the optimal 
electricity mix only in the 

baseline scenario.
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Figure 3.2. CAPEX and OPEX under the decarbonisation and baseline pathways, assuming low EUA prices
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Source: Output of the MOEM model.

The large difference in the required investment between the baseline and the decarbonisation scenarios in the late 
2020s translates into relatively large differences in terms of GDP and consumption between the two pathways. In 
2030, GDP in the decarbonisation scenario is 1.5% lower than in the baseline scenario. The difference in consumption 
is even sharper: in 2030, consumption is 2% lower than in the baseline scenario. The simulation also suggests this 
drop is temporary and there is no significant difference between the two scenarios in the 2040s and 2050s.

Figure 3.3. The difference in GDP and consumption between the decarbonisation and baseline pathways, assuming 
low EUA prices
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Source: Output of the MEMO model.
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3.2. Low costs of intermittent RES
To examine the case of a fast decline in installation costs of major intermittent RES (solar PV, onshore wind, and 
offshore wind), we use the ‘low’ cost trajectory projections in Hand et al. (2017), which assume that, between 2017 
and 2030, PV, onshore wind and offshore wind costs will fall by 43%, 21%, and 40%, respectively, compared to the fall 
by 24%, 7%, and 31% in the trajectories used in Section 2. Surprisingly, a large reduction in RES installation costs does 
not significantly change the optimal mix under the baseline pathway. PV energy is introduced into the mix in the late 
2040s; its share in 2050, however, is negligible. Similarly, traces of offshore wind can be observed, but clearly this 
technology does not play a significant role in this scenario.

Figure 3.4. The optimal electricity mix under the baseline (left) and decarbonisation (right) pathways, assuming low 
costs of intermittent RES
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Source: Output of the MOEM model.

Lower costs of installation decreases CAPEX in both pathways. As expected, this effect is stronger in the decarboni-
sation pathway due to the larger deployment of RES. As a result, the difference between CAPEX in the two pathways 
decreases: the cumulative CAPEX between 2017 and 2050 in the decarbonisation pathway is 300bln PLN larger than 
that of the baseline pathway under the assumption of low RES installation costs, and 330bln PLN larger under the 
assumptions used in Section 2.
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Figure 3.5. CAPEX and OPEX under the decarbonisation and baseline pathways, assuming low costs  
of intermittent RES
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Source: Output of the MOEM model.

The GDP and consumption pattern resembles the pattern observed under the scenario used in Section 2: except for 
the 2030s, the decarbonisation pathway involves a loss, albeit an insignificant one in terms of its size. The largest 
loss in terms of GDP and consumption takes place in the late 2040s. In 2047, consumption under the decarbonisation 
pathway is 1% lower than under the baseline pathway.

Figure 3.6. The difference in GDP and consumption between the decarbonisation and baseline pathways, assuming 
low costs of intermittent RES
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Source: Output of the MEMO model.
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3.3.  High costs of intermittent RES
For completeness, we also report the outcomes of the analysis under the assumption that the RES installation costs 
follow the ‘high’ trajectory given in Hand et al. (2017).

Figure 3.7. The optimal electricity mix under the baseline (left) and decarbonisation (right) pathways, 
assuming high costs of intermittent RES
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Figure 3.8. CAPEX and OPEX under the decarbonisation and baseline pathways, assuming high costs  
of intermittent RES
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Source: Output of the MOEM model.

The results for GDP and consumption in the high-cost RES scenario do not differ significantly from those obtained in 
Section 2. The loss in consumption is slightly larger (1.2% in 2047), because now the large adoption of renewables is 
more expensive. However, the size of the loss remains rather small from a macroeconomic point of view.
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Figure 3.9. The difference in GDP and consumption between the decarbonisation and baseline pathways, assuming 
high costs of intermittent RES
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Source: Output of the MEMO model.

3.4. No nuclear technology
One final iteration of the analysis is carried out under a scenario where nuclear technology is not available. 

The adoption of this technology remains uncertain for two reasons: first, it may be blocked by groups 
of ecologists and policy-makers concerned about associated safety issues; second, it requires large-
scale mobilisation of capital in a relatively short period of time, which may be infeasible.

The first important observation from this exercise is that nuclear power can, to a large extent, 
be replaced by offshore wind (11% in 2050, which is larger than solar PV) in the decarbonisation 

pathway. The second observation is that the absence of nuclear power in the decarbonisation 
pathway may lead to power shortages. The simulation indicates a small shortage of 3% appearing 

in the second half of 2040s. To avoid this, a drop in demand would be required.

Figure 3.10. The optimal electricity mix under the baseline (left) and decarbonisation (right) pathways, assuming 
that nuclear technology is not available
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If there is no support 
for nuclear technology, 
it could be substituted 
with the deployment of 

offshore wind. 
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Figure 3.11. CAPEX and OPEX under the decarbonisation and baseline pathways, assuming that nuclear technology 
is not available
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Source: Output of the MOEM model.

An increase in the construction of gas plants and renewables in the decarbonisation pathway now results in high 
demand for investments, starting in the late 2020s and lasting until the end of the analysed period (see Figure 3.11). 
This investment requirement translates into GDP and consumption losses. However, as in the case for the other 
scenarios, this loss is not significant.

Figure 3.12. The difference in GDP and consumption between the decarbonisation and baseline pathways, 
assuming that nuclear technology is not available

0.20%

0.00%

-0.20%

-0.40%

-0.60%

-0.80%

-1.00%

20
17

 

20
20

 

20
25

20
30

20
35

20
40

20
45

 

20
50

 GDP
 Consumption

Note: The unit on the vertical axis is the level of GDP in the baseline scenario.

Source: Output of the MEMO model.
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PART 2

Consequential risks  
beyond models’ simulations
Due to the models’ limitations, the simulations cannot account for all potential consequenc-
es of changes in the electricity mix. In this part we discuss the risks that are not captured 
in the simulations in Part 1. We discuss three risks associated with the baseline pathway 
and three associated with the decarbonisation pathway. Each risk is explored using tailored 
quantitative and qualitative methods. Furthermore, we attempt to quantify the importance 
of these risks using the Fuzzy Cognitive Mapping method. 



4. Risks associated with the baseline pathway
In this section we highlight three risks associated with the implementation of the baseline pathway: 1) loss of interna-
tional reputation, 2) dependence on imported coal, and 3) wasted investments into coal-related R&D. The description 
of the risks are based on the scientific literature, public debate, and interviews with relevant stakeholders.

4.1. International Reputation3

ANDRZEJ CEGLARZ

The first of the investigated risks is the potential loss of Poland’s international reputation as a result 
of implementing the baseline (i.e. coal-dependent) scenario. Since Poland is an active player in 

international relations at various levels, and given that climate change and energy transition are 
crucial topics discussed in international circles, this risk has been identified as a relevant and 
realistic development. Yet measuring the risk in objective terms is challenging; it can therefore 
only be interpreted in a relative way. 

According to Cook (2016), reputation is important on the international stage because it facili-
tates cooperation among multiple actors and provides ex ante insight into the feasibility of a giv-

en form of cooperation. While ‘reputation’ itself is a multidimensional concept (Pineiro-Chousa 
et al., 2017), it can be defined as a relationship between at least two actors (a reputation holder and 

a reputation observer) that is based on the latter’s expectations, beliefs, and attitudes towards the former’s 
behaviour (Cook, 2016; Downs and Jones, 2002; Gray and Hicks, 2014). Such an understanding implies a few chal-
lenges that should be addressed. First, the process of creating a reputation does not take place in a vacuum – it is 
interpretative and context-dependent and, in international relations, it hardly ever ‘starts from scratch’ because it is 
influenced by the history of past experiences between actors (Cook, 2016). Second, a reputation is formed in the eyes 
of the individuals that constitute the audience for reputation-forming actions, and not states per se (Gray and Hicks, 
2014). This is especially important, since it is not the broad public that is being present in the international environ-
ment, but national politicians, international bureaucrats, and selected interest groups (cf. Dreher and Lang, 2016). 
Third, an actor can be characterised by having many different reputations, therefore a reputation formed on the basis 
of a chosen action or policy (in this case the energy policy) does not exist in isolation from other actions and policies 
(Downs and Jones, 2002; Gray and Hicks, 2014).

In this respect, Poland suffering from a loss in international reputation (or, in other words, gaining a negative repu-
tation from the international environment) could materialise if the Polish government chose to follow the pathway 
involving the high use of coal. It should be noted that the possibility of this risk occurring is already high: some 
years ago Poland gained something of a reputation as being an opponent of the EU’s ambitious climate and energy 
policies (Ancygier, 2013; Gradziuk, 2014), meaning that expectations of an improvement in this area are not high 
(Wyciszkiewicz, 2014). Similarly, based on stakeholder interviews, in a global context the representatives of the Polish 
government are also perceived as not fully considering the significance of climate change, its complexity, or the need 
to undertake mitigation measures. For example, on the United Nations Security Council, on which Poland currently 
holds a non-permanent seat, the Polish representatives are perceived to not show enough interest in linking security 
issues with climate change, despite this issue having been recognised as an important security issue (e.g. in the 
context of Small Island Developing States, as well as the way climate change impacts on both migration and conflict 
vulnerability), even though it is believed that a change of stance could contribute to strengthening Poland’s diplomatic 
position as an actor willing to take a lead (cf. Dröge, 2018).

3  The results of this section are based on a literature review and interviews with four stakeholders from the government, politi-

cal advisory, and industry sectors. The authors would like to express their gratitude to the stakeholders for their time and for 

providing important inputs that greatly contributed to this section.

Loss of 
international 

reputation due to continued 
consumption of coal could 

have negative consequences 
in other policy areas (e.g. 

agriculture, trade, or 
innovation).
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A loss of international reputation can have several negative consequences. First, having a reputation that exerts low 
expectations from the very beginning of decision-making processes could lead to Poland being excluded from certain 
political alliances, coalitions, or partnerships that are created, or from efforts to establish ambitious decarbonisation 
plans and programmes in other policy areas outside energy, because it may be perceived as more of an obstacle to 
negotiations rather than a constructive collaborator. This is especially true since international and EU legislation con-
cerning climate and energy policies represents an interdependent system related to agricultural, innovation, research, 
and trade policies. Second, the already established direction of such international and EU agreements (e.g. the Paris 
Agreement or the 2030 Energy and Climate Framework) aims at incremental and constant decarbonisation, so the 
Polish government will need to implement adequate regulations anyway. Finally, the system of financial incentives 
and subsidies provided by the EU in the form of its cohesion policy will continue to promote investments in low-car-
bon measures, which might bring obstructions during the negotiations of the EU’s Multiannual Financial Framework. 
Additionally, since most of these funds will be directed to be spent at the local level, it will only strengthen the prefer-
ence of citizens and local authorities to invest in renewables over other energy sources (Ancygier and Szulecki, 2014; 
Gwiazda and Ruszkowski, 2016), which will be reinforced by their health concerns related to air pollution and smog.

To create a positive image when it comes to climate change and energy transition issues, the Polish government has 
undertaken various steps addressed to both the public at large as well as international actors. The most important 
among them are: (i) hosting the United Nations Climate Change Conferences (COPs), which have already been organ-
ised in Poland three times (COP14 in Poznań in 2008, COP19 in Warsaw in 2013, and COP24 in Katowice in 2018); (ii) 
stimulating growth and development in the field of electromobility; (iii) advocating the idea of climate neutrality based 
on forestation (cf. Szulecka, 2016); and (iv) international research endeavours aimed at the development of clean-coal 
technologies. Additionally, the Polish government has (v) constructed a narrative based on the greenhouse gases 
(GHG) reduction targets stipulated in the Kyoto Protocol, which were obtained with considerable surplus and coupled 
with constant economic growth (cf. Skłodowska, 2018); (vi) called for a more just and fair reworking of the numbers 
related to GHG emissions and reductions in relation to other countries and their economies, and (vi) cited the US with-
drawal from the Paris Agreement in June 2017 as a justification of its public support of coal (cf. Popkiewicz, 2017).

Nevertheless, although Poland is a member of various international forums dealing with climate-change mitigation 
measures, the European Union is the most important stage for Polish policy-makers. It is here where key negotiations 
take place, binding decisions are made, and where a state’s reputation is formed. In the European setting the general 
position of the Polish government regarding its inclination to preserve the coal-based energy sector is clear, therefore 
there are no excessive expectations or attempts from other EU actors to change it. Polish representatives place great 
emphasis on the negotiations on the detailed provisions of the regulations in the EU’s policy-making process since 
such negotiations serve not to help create a positive reputation for Poland, but, more importantly, are the basis upon 
which specific solutions are determined, which afterwards will need to be transposed and implemented into the 
Polish legal system. Additionally, the high level of technical and legal specificity related to these processes does not 
make it an attractive topic to be communicated to the broader public and therefore contributes little to a country’s 
reputation outside of policy-making circles.

The risk of Poland gaining a negative international reputation by implementing the coal scenario is a realistic one. 
If it happens, its effects will be more observable at the European level than at the global one. In the global context, 
the implementation of a coal scenario may be equated with an unambitious climate policy, which may be interpreted 
as self-oriented behaviour that does not take any shared responsibility for the plight of those members of the inter-
national community that are more vulnerable to climate-change effects or for future generations. In the European 
context, despite the complexity of ‘reputation’ as a notion and the different potential interpretations that may spring 
from it, the most serious consequences of that risk may occur in regard to Poland’s economic policy and its various 
interrelated branches. Thus, Poland’s international reputation can also be understood as a function of its economic 
policy and, when combined with the EU’s normative climate and energy policies, such a loss in reputation should not 
be overlooked by the Polish authorities.  
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4.2. Dependence on imported coal
ALEKSANDER SZPOR

For many decades, Poland’s rich coal resources helped meet the country’s energy demands and therefore constituted 
an important part of the Polish economy (Szpor and Ziółkowska, 2018). However, if some of the recent trends in the 
sector persist, its coal-based energy system may become more of a hindrance than a solution for energy independ-
ence and economic growth.

To take a negative scenario, despite further state support of the coal sector, restoration of the 
sector’s long-term economic viability is unlikely. Even if productivity within the sector im-

proves, it will most likely be achieved by a further reduction in domestic coal production. 
In this case, importing coal would only strengthen the position of Poland as a net coal 
importer. The possibility of increasing coal imports to Poland is reinforced by the fact 
that the current methodology of estimating coal resources does not take fully into 
account the economics of coal exploration. 

The realisation of this scenario would have two major consequences. First, an in-
creased share of Russian coal in domestic consumption would increase Poland’s 

exposure to pressure from this country. The significance of this is compounded by 
the fact that Russia is already the main exporter of oil and gas to Poland. Secondly, it 

would undermine the recent and planned investments in coal-based energy infrastructure 
(power plants and grids). The dominance of coal is often defended by the argument that the fuel 

is produced by the domestic economy. If domestically produced coal is replaced by imported coal, this argument 
will no longer be valid.

4.2.1. THE PUBLIC DEBATE

Higher imports of coal to Poland is related to several internal and external factors. Internally, the situation of the coal 
sector is bound by limited production capacity. It is being presented by the current Minister of Energy as a result of 
the previous government’s negligence over its failure to mobilise domestic capital (Wawrzyszuk, 2017) or even as part 
of the policy of that government to intentionally destroy the sector (Radiomaryja.pl, 2017). 

Among less prominent participants of the public debate, there is a widespread opinion that the weak competitiveness 
of the Polish coal-mining sector is strongly related to wage pressures exercised by coal-mining trade unions. This 
is especially the case in the largest coal-mining company in Poland, where around half of the fixed costs relate to 
personnel costs (Dudała, 2018). A number of other problems, such as complex remuneration schemes or inefficient 
organisation of work, also reduce the flexibility of major coal companies and their ability to compete on the market in 
terms of production capacity (Oksińska, 2018).

Another important part of the discussion on internal factors are the geological and economic aspects of Polish coal 
reserves. Representatives of the coal sector and many politicians claim that the combination of rich coal resources 
and domestic business in Poland form a comparative advantage that Poland should explore (Kn/PAP, 2017).

Other views expressed in the public debate include the belief that rich coal reserves are a myth, as the economic 
reserves (in contrast to resources) are scarce. This is reflected in the constantly increasing depths of mines and 
lengths of galleries, which have two major negative effects on productivity. First, this factor prolongs the time needed 
to transport miners to longwalls and effectively reduces the time spent on actual mining. Second, it increases the risk 
of catastrophes occurring (e.g. methane explosions) and thus requires more investment in security measures (CIRE.
PL). Another important geological constraint is limited domestic resources of coal with a low share of sulphur (which 
is especially required in heat production). 

Imports of coal are also facilitated by other external factors like the good quality of Russian coal, despite an estab-
lished political narrative whereby it has been labelled ‘worthless Russian coal’ (Fakt.pl 2014). The competitiveness of 

Continuing  
reliance on coal might 

pose a threat for energy 
security and economic growth 
in the long run. This risk could 

be mitigated if the costs of coal 
extraction in Poland goes down 
or if the energy mix becomes 

more diversified.
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Russian coal is also supported by the investments made in transport infrastructure in Russia and Belarus, as well as 
the fact that the transport of coal in Russia enjoys state subsidies. 

4.2.2. THE MAIN TRENDS AND PROSPECTS 

Of the three main types of coal produced and consumed in Poland, only lignite coal cannot be transported over long 
distances. Therefore, it is hardly exportable or importable. Considering also that the power plants fired by lignite 
cannot use any other type of coal, we shall not include that factor in the main analysis of this risk.4 

The two other types of coal – thermal and coking – are produced in, imported to, and exported from Poland. The 
production and consumption of coking coal are significantly lower than that of thermal coal. However, as the price of 
coking coal is substantially higher, it remains more attractive than thermal coal. In terms of import partners, coking 
coal is more balanced, and Russia plays a minor role in it. Russia’s dominance in terms of imports is clear in thermal 
coal, and hence our main analysis focuses on this type of coal.

Between 2007 and 2016, Poland was mostly a net importer of thermal coal and Russia was Poland’s main supplier 
(Figure 4.1).5 In this period, domestic thermal coal production fell from 73.8 to 59.2 Mt, that is by around 20%. In the 
same period, the level of thermal coal imports increased (from 3.7 to 5.8 Mt) and the level of exports fell (from 9.5 to 
6.6 Mt). Production and balance of trade data from the last decade does not manifest very clear trends, and therefore 
no definite conclusions for the future can be drawn. However, a comparison of the data from the initial and final years 
of this period indicates that the Polish coal sector is covering a diminishing share of domestic thermal coal demand. 
Up until now this process appears to have been very slow and it seems the dominant position of domestic coal will not 
disappear in the near future. However, the role of imported coal can become significant in the long run if the relative 
competitiveness of Polish mines continues to decline.

Figure 4.1. Polish imports by country partner and total exports of other bituminous coal (2007–2016)
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4  In this context the role of lignite is important only as in the context of it being one of the fuels balancing the exposure of risk 

related to the importation of fuels.
5  The main types of coal produced and consumed in Poland are thermal coal (classified as ‘other bituminous coal’) and coking 

coal. Coking coal in the given period (2007–2016) was imported mainly from Czechia (35%), the United States (32%), and 

Australia (26%), and only 2.7% of the total was imported from Russia.
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The competitiveness of the main coal companies did not improve visibly in this period despite the restructuring pro-
grammes undertaken by the previous and current governments. A study by Dubiński and Turek (2017) showed that 
the restructuring process over the last 25 years did not solve the problem of its inefficiency related to, among other 
factors, support for permanently unprofitable mines. An analysis of the key indicators in the same period of time by 
Korski, Tobór-Osadnik, and Wyganowska (2016) pointed to the decreasing quantity of good quality coal leading to 
the disappearance of location rent within the Polish coal-mining sector. Based on their analysis, the authors expect 
further reductions in coal consumption in Poland in the future. 

More in-depth research into selected coal mines carried out by Jonek-Kowalska and Turek (2016) confirmed the 
negative impact of natural risks and inflexible remuneration schemes on the performance of coal mining. The latter 
factor has proved particularly costly during the period of downturn in the sector. Moreover, a study by Jonek-Kowal-
ska (2017) showed that plans for installing new technologies are unlikely to be implemented in the short or medium 
term due to financial constraints. 

4.2.3. CONCLUDING REMARKS

The increasing dependence of Poland on imports of coal, especially from Russia, is a scenario that is likely to occur; 
however, the scale and pace of this process would only pose a substantial risk if several trends were to coincide.

First, it would require that none of the major policies to diversify energy sources supplies were realised, namely the 
electrification of transport (aimed at reducing the dependence on oil supplies coming almost entirely from Russia) 
and the new gas pipeline (the ‘Baltic Pipe’) from Norway (to reduce dependence on gas imports from Russia). 

Second, it would require that the internal transformation of coal did not achieve at least a major part of its strategic 
goals, namely improvements in the flexibility of wages in coal-mining companies, the closure of permanently unprof-
itable mines, and investments in R&D. 

As for the pace of increasing imports of coal, although new investments in coal mines are rather unlikely within 
this timeframe, at least part of the existing mines will continue to produce coal for political, technological, and 
economic reasons. Also, the import capacity of Poland and export capacity of Russia cannot be substantially 
increased overnight.

Considering the above, the risk of increasing imports from Russia is high, yet the pace and limits of this process can 
be controlled to a certain degree through investments both in the coal sector and in alternative energy technologies 
independent from supplies from Russia, such as RES (including biomass) and gas (should the Baltic Pipe be realised 
before 2022).  

4.3. Waste of R&D resources
JAN WITAJEWSKI-BALTVILKS

Remaining on the baseline pathway involves the continuation of large-scale investments in coal-re-
lated industries including the mining sector, manufacturers of specialist machinery and furnac-

es, and specialist coal plant construction companies. Part of this investment will be devoted 
to research on how to improve existing technologies as well as how to adapt technologies 
developed elsewhere to Polish conditions. Similarly, the continuation of production in 
coal-related industries will allow the new generation of engineers, designers, and con-
structors to gain or expand their experience in handling coal-related technologies. Re-
search and experience reinforce one another and together form a tacit knowledge at the 
sectoral level, which we could label as coal-related know-how.

In the baseline 
scenario, the benefits from 
coal-related R&D (required 

to increase the efficiency of 
both coal mining and electricity 

generation) will be limited as the 
global shift to alternative energy 

sources becomes more 
pronounced. 
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Normally, this know-how would be of high value because it (i) increases the efficiency of production in the future and (ii) 
allows for further improvements in technology (see the discussion of the spill-over effects in the managerial and growth  
literature). The longer those technologies will be utilised in the future, the larger the return on this investment will be.

On the other hand, the effort of gaining know-how will bring only a small return if coal-related technologies lose the 
race with alternative energy technologies. The global technological frontier of renewable energy sources will most 
likely continue to move forward very fast. The moment that these technologies become much cheaper than the coal 
technologies, the global demand for coal and the output of coal-related industries will start shrinking rapidly. Una-
voidably, the Polish energy sector will have to follow this trend and the domestic demand will shrink too. Should this 
happen the knowledge and experience gained today will be of no use in the future.

At the same time, the effort put into acquiring know-how in coal technologies has opportunity costs. If today, instead 
of investing in coal, Poland invested in RES, the R&D sector will have an incentive to follow the same switch. High do-
mestic demand for RES will incentivise companies, including manufacturers, developers, and constructors, to invest 
in R&D into RES technologies. In addition, the investment will spark the learning-by-doing process that allows firms 
and, most importantly, involved individuals, to gain valuable experience. The RES-related know-how acquired from 
domestic research and experience will be valuable because it will help to absorb the fast technological progress of 
RES at the global technological frontier (Goulder and Schneider 1999). In the absence of such know-how, the costs of 
RES installations will likely be higher than in other countries.

Whether or not RES technologies win the race with coal technologies depends heavily on the choices of other countries. 
If large global regions, such as the EU or China, signal their commitment to invest in clean-energy technologies (such 
as RES), then inventors and R&D companies across the world will have a clear incentive to continue the development 
of these technologies. In fact, these technologies are today developed not only in Europe but also in China and the US. 
Should this trend continue, RES technologies will inevitably win the race with the traditional energy technologies (such 
as coal-extraction technologies) in the long run. This argument is formally discussed in Witajewski and Fischer (2018).

The work by Witajewski and Fischer (2018) predicts that the switch of Polish companies from gaining coal-related 
know-how to gaining RES-related know-how will take place without government intervention when RES technologies 
start winning the race. Nevertheless, the intervention can be desired for two reasons. First, promoting investment 
in coal will delay the switch. Society would gain more if companies started gaining RES-related know-how as soon 
as possible. Second, investment in coal may the send the wrong signal to firms that the demand for coal-related is 
guaranteed in the future. 

5. Risks associated with decarbonisation pathway
In this section we present three risks related to the implementation of decarbonisation pathway. Our analysis derives 
from the public debate in which widely discussed risks are a) intermittency of RES, b) dependency on imported tech-
nologies and c) inability of workers from the mining sector to find employment in other sectors . 

5.1. Intermittency of RES
MAREK ANTOSIEWICZ

The Model for the Optimal Energy Mix in Poland discussed in the first part of the report does not take into account 
several factors that are crucial when conducting an analysis of the transformation to an electricity-generation system 
based on RES. Since it is a long-term horizon planning model in which the time period is a year, it does not incorpo-
rate crucial details of the functioning of the energy system that appear when the system is modelled using a finer 
temporal resolution. Because of this, it is important to supplement the analysis with additional research that takes 
such elements into account. 
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One such factor are costs linked to the intermittency of renewable electricity sources – primarily 
wind and solar. Relying on these power sources requires back-up power generation for periods 

of time when electricity from these sources is not available, and therefore results in addition-
al costs. Furthermore, the MOEM takes into account the hourly, daily, weekly, and seasonal 
variations in energy demand in only a simplified way, and it is possible that not taking 
them into account underestimates the costs of integrating renewable energy sources. 
Another group of costs are linked to the necessity to strengthen the energy grid and make 
it more flexible in order to accommodate fluctuations in electricity production. Finally, the 

integration of RES may reduce the efficiency of conventional power plants due to the fact 
that at times of low demand and high RES production they might need to be turned off.

In order to assess the aforementioned issues, we use a bottom-up energy system of the Pol-
ish electricity-generation system called Calliope (see Pfenninger, 2017). Due to the high temporal 

resolution of the model (the time period of the model is one hour), the model is particularly well suited to analyse 
the problems of wind and solar intermittency. The model defines available electricity-generation technologies along 
with their costs (which are divided into several categories: the capital cost of installation, the lifespan of plants, fixed 
and variable maintenance costs, the cost of fuel) and constraints (such as minimum or maximum installed capacity, 
hourly flexibility of output, available resource for wind and solar), as well as time series data for electricity demand. 
A single simulation consists of running the model for an entire year (e.g. 8.760 hourly time periods for the year 2015) 
and results in an optimal energy mix consisting of installed capacity and electricity generation by plant type. For 
electricity demand we use data for the year 2015 from the Polish National Grid Operator (www.pse.pl), whereas cost 
parameters are taken from Klima et al. (2015), EIA (2013), DECC (2014), and PB (2013).

In order to assess the potential cost increase associated with pushing for a higher share of renewables, we run 
a simulation sweep in which we impose an additional constraint that the share of electricity generated from RES 
must exceed a given threshold from 5% to 95%, and analyse how the resulting energy mix changes while we increase 
this share.

The resulting levelised cost of producing electricity is shown in Figure 5.1. Increasing the required share of renewable 
electricity production results in an increase in the cost, as well as the rate at which the cost increases. The initial 
increase in the cost is relatively small. For a low (up to 30%) and mid (up to 60%) share of renewables, the cost goes 
up by only 0.9% and 8.1%, respectively. After crossing the 60% barrier of RES in the mix, costs go up significantly. At 
current prices, a mix consisting of 90% of RES would cost 44.2% more.

Figure 5.2 shows the details of the resulting energy mix, both in terms of energy generation and the installed capacity 
structure. As we increase the required share of renewable energy in the system, we see that coal is slowly being 
replaced with wind power. However, a significant back-up of flexible gas power is needed in order to generate power 
during periods of peak demand and insufficient wind production. While gas turbines are relatively expensive to oper-
ate, they only need to be used sparingly and therefore the overall increase in the cost of producing electricity is not 
large for medium shares of renewables in the mix. The slightly higher rate in price increase in the 30–60% range is due 
to the fact that at this stage wind power is starting to push out lignite from the mix, which is cheaper than hard coal.

To conclude, the analysis carried out using the Calliope model does not show significant risks associated with the 
intermittency of energy sources when pushing for renewable energy in the range of up to 50%. Since Poland is strug-
gling to achieve a 15% share of renewable energy in its mix, in the foreseeable future we see no techno-economic 
barriers for opting for such a change. The amount of gas that will need to be used for backing up wind-power gener-
ation is 1.09 to 2.59 bln m^3 for a share of renewables, equal to 30% and 60%, respectively. This is no more than 15% 
of Poland’s yearly gas consumption, and following the opening of the LNG terminal Świnoujście, we see no threat in 
terms of energy security. 

Increasing RES 
output will result in only 

a small cost increase, and will 
carry no other significant risks. 

Currently the cheapest RES option 
for Poland is onshore wind power, 

which should be supported 
by significant gas power 

reserves.
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Figure 5.1. Levelised cost of electricity in PLN per kWh for different levels of minimum required share of renewable 
energy output
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Figure 5.2. Electricity production (left panel) and installed capacity (right panel) structures for different levels of 
minimum required share of renewable energy output
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5.2. Dependency on imported technologies6

ANDRZEJ CEGLARZ

While there are sufficient prospects for the development of renewable energy sources in the Polish 
power sector, according to some stakeholders (Forum Energii, 2017; Paska and Surma, 2014), 

Poland will probably not meet the overall 15% RES target in its gross final consumption of en-
ergy by 2020 that it committed to as part of the EU’s Renewable Energy Directive (2009/28/
EC) (Janeiro and Resch, 2017). The potential for the use of RES in 2050 is promising (see 
Section 3); however, this development is subject to navigating another risk, namely techno-
logical dependency. Since from a global perspective the most dominant RES technologies 
are wind and solar, some stakeholders argue that opting for these technologies in Poland 

would serve to augment the economic dominance and political power of actors specialising 
in their production, development, and promotion, such as Germany (Jakóbik, 2018; Ruszel, 

2017). Thus, the broad implementation of these technologies in Poland would lead to techno-
logical dependency on foreign producers and manufacturers. This, in turn, would result in increasing 

import costs, a lack of job creation, and the rise of an unprofitable segment that does not contribute to GDP. 

According to stakeholders representing the industry, the likelihood of this pessimistic scenario occurring is low be-
cause Poland, generally, has enough domestic capacity to avoid technological dependency and to develop technolog-
ical niches, which would provide highly specialised RES components, solutions, and services. Stakeholders point out 
that such development is already taking place in relation to photovoltaics (cf. IEO, 2017), electromobility batteries, 
and biomass. In addition, offshore wind carries great potential to involve Polish capital, firms, and suppliers. Accord-
ing to Sawulski (2017), up to 70% of offshore wind farm investment costs can be covered by the Polish value chain, if 
it develops in parallel with the technology deployment in Poland (see the detailed description of the offshore market 
below). Regarding the photovoltaics market, although the installed solar capacity in the system is marginal, 60% of 
all photovoltaic modules sold in Poland in 2016 were produced domestically (IEO, 2017) and there is the potential to 
further develop and introduce innovations in this sector.

What is more, some stakeholders argue that incentivising the deployment of RES might bring benefits that go beyond 
profits for private firms. Choosing a path leading to the development of specific technological innovations or services 
would contribute to intensifying international cooperation in the energy field (cf. Gawlikowska-Fyk et al., 2017).

It should be also noted that, if technological dependency was to occur, different types of RES could be affected dif-
ferently. For example, technological dependency would occur not only in relation to a type of technology per se, but 
possibly also to the availability of specific resources. This is especially relevant to rare-earth elements needed for 
the production of RES components like in solar panels and, possibly, permanent magnet generators in wind turbines, 
which could increase their efficiency and reduce their overall costs (Smith Stegen, 2015).

To conclude, the implementation of an RES scenario could bring with it the risk of technological dependency, but this 
will likely not materialise. It would be only possible if there were negligence in investing in domestic resources and if 
the domestic industry did not direct any resources into R&D in the RES sector.

6  The results of this section are based on a literature review and interviews with four stakeholders from the government, politi-

cal advisory, and industry sectors. The authors would like to express their gratitude to the stakeholders for their time and for 

providing important inputs that greatly contributed to this section.
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BOX: EXAMPLE: TECHNOLOGICAL READINESS OF POLISH FIRMS FOR THE DEPLOYMENT  
OF OFFSHORE WIND

JAKUB SAWULSKI

In recent years offshore wind has become one of the fastest-growing renewable energy technolo-
gies in the world. This is the case also in Europe, where the technology is gaining momentum, 
especially in countries with access to the North Sea. The Baltic Sea is also being explored, 
mainly by Denmark and Germany, but its potential is still largely unused. Poland – with 
its favourable geographical position (featuring a long coastal line and good wind and 
soil conditions) as well as a significant need to establish new energy sources emerging 
from the gradual decarbonisation of the economy – is expected to play a pivotal role in 
kick-starting the offshore market on the Baltic Sea.

Sawulski et al. (2018) evaluated the offshore wind innovation system in Poland, addressing the 
issues related to the development, diffusion, and possible use of offshore wind technology. They 
used the Technology Innovation System approach based on the methodology developed by Bergek 
et al. (2008), Hekkert et al. (2011), Luo et al. (2012), and Wieczorek et al. (2012). This procedure consists 
of both structural analysis, i.e. mapping the main components of the innovation system, and functional analysis, which 
involves evaluating how the innovation system is behaving in terms of key processes. Following these steps, innovation 
system failures are identified and policy implications formulated. The study was based on 11 in-depth interviews with 
stakeholders representing public administration, universities, non-governmental organisations, and industrial actors, as well 
as on other available sources: scientific and industrial literature, scientific publication databases, patent databases, and 
governmental data. In this section we summarise their findings.

The authors show that although there are no offshore wind farms in Poland, Polish industry can cover a large part 
of the offshore wind farm investment. There are close to 70 business entities that are directly active in this sector or 
ready to be involved in this business on a local and global scale. So far, activity in this area shows that large state-
owned companies – PKN Orlen and PGE EO, as well as the privately owned Polenergia – will probably be the most 
important investors and project developers. There are also at least a few significant players on the global offshore 
wind market with their businesses located in Poland, i.e.: GSG Towers, Energomontaż-Północ Gdynia, ST3 Offshore, 
GS Seacon, Aarsleff, and Spomasz Żary. These companies mainly specialise in the supply of foundations, towers, 
and substations. Their portfolio includes many realised projects, in particular for offshore wind farms located on the 
Baltic and North Seas. Moreover, Tele-Fonika Kable is one of Europe’s largest cable producers, whose cables have 
been largely used in offshore wind investments worldwide. 

The strength of the Polish offshore wind value chain is its well-developed ship-building industry. The offshore wind 
sector requires specialised vessels for environmental and geological research, transport, and installation of wind 
farm components, as well as servicing wind farms. The industry covering the construction and repair of ships and 
boats in Poland includes over 5,000 enterprises (of which about 80 employ more than 50 workers), and employs 
almost 30,000 workers (2015 data) (Statistics Poland 2016). Polish ship-building companies offer a few models 
of vessels dedicated for offshore wind farms investments, which have already been used in offshore wind projects 
worldwide. 

In this context, the possible development of the offshore wind technology in Poland may be a new stimulus for the 
development of the northern part of Poland. During Communism, it was economically one of the most important 
Polish regions, with the ship-building industry a key specialism. At the same time, this region has been strongly 
affected by economic transformation, and today the unemployment rate in the West Pomeranian voivodship (one of 
two provinces in the north of Poland) is significantly higher than in the rest of Poland. 

The analysis by Sawulski et al. (2018) shows that, currently, at least 50% of the offshore wind farm investment costs 
can be covered by the Polish value chain. This share can rise to up to 70%, assuming the value chain develops in par-
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offshore wind farm investment 
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value chain.This share can rise 
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technology deployment  

in Poland.

5.	Risks	associated	with	decarbonisation	pathway	 41



allel with technology deployment in Poland. However, there are still some important gaps in the presence of relevant 
industrial actors for offshore wind deployment in Poland. This is especially the case when it comes to nacelle and 
rotor production. These two elements, together with blade supply, account for about one-third of offshore wind farm 
investment costs. 

According to the results of the study, the innovation system is hindered mostly by policy-makers’ unclear attitude to 
offshore wind technology deployment in Poland. This results in, among other things, a lack of national policy objective, 
unknown future market size, and uncertainty about support policy. The authors identify the political decision to introduce 
offshore wind to the Polish energy strategy as a precondition for the development of the technology in Poland. However, 
this is insufficient. The authors identify the lack of turbine suppliers in the Polish value chain as one of the most impor-
tant blocking mechanisms to ensure greater participation of the Polish industry in future offshore wind projects. In the 
short term, however, the probability of having a new Polish market player in that area is rather low. Public policy should 
concentrate on using the available instruments to encourage foreign companies, especially nacelle and rotor producers, 
to locate their subsidiaries in Poland. This policy could include tax incentives, investment credits, infrastructural subsi-
dies, and the sharing of investment areas (especially in the northern part of Poland), as well as other forms of non-finan-
cial support. The aim of attracting foreign investors in that area is to stimulate the technology-absorption process (e.g. 
by establishing joint ventures), strengthen the national value chain, and in the long-term to transform Polish offshore 
wind business from the role of sub-supplier to the position of general contractor.  

Other policy implications concern improvements in knowledge and energy infrastructure. The problem with the 
insufficient contribution of knowledge to the innovation system emerges from both the inadequate number of 
knowledge actors as well as the rather poor quality of research. This stems from inappropriate incentives created 
by science policies. Scientists do not generally respond to the needs of the private sector, as they are rewarded 
mainly for theoretical scientific papers and have no inclination to search for inspiration in business and provide 
commercially applicable knowledge. The incentives for international cooperation, which may help in transferring 
the knowledge from more experienced countries, are also weak. Regarding infrastructural issues, adapting sea-
ports and building new as well as improving existing grid infrastructure are the two main challenges. For the 
latter, the concept of international marine networks in the Baltic Sea are highly promising, as they can significantly 
reduce the costs of connection to the grid (which in Poland incurred by investors). These ideas require support 
and engagement from policy-makers, especially regarding international cooperation between countries potentially 
interested in such projects.

5.3. Decline in employment
JAN WITAJEWSKI-BALTVILKS

The large-scale deployment of renewable energy sources implies a significant reduction in the demand for coal and 
labour in the mining sector. If this drop in demand is associated with job losses for workers, those workers will need 
to find employment in other sectors. However, if the skills of those workers do not match the requirements of jobs in 
other sectors, their productivity will be low and some of them will leave the labour market. From a macroeconomic 
perspective a reduction in the labour force will result in a fall in GDP. From a social perspective, the loss of status, 
reduction in wages, and large-scale lay-offs in the mining regions will result in social unrest. 

The findings from the literature 

This mechanism is partly taken into account in the MEMO model and other general equilibrium models. These models 
usually predict a negative effect of climate policies on labour, though for carbon tax policies there is the possibility of 
a double dividend through productive spending of tax revenues. Indeed, the prediction discussed in Section 2 of this 
report confirms the results of other studies. For instance, the ENV-linkage model by the OECD (2018) predicts that 
an ambitious climate policy will have a negative effect (carbon tax above USD40/tCO2) on the wages of blue-collar 
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workers in OECD countries. It also predicts a small negative effect on total employment if the revenue 
from the tax is recycled through a lump-sum transfer to workers. 

Several other studies have analysed the impact of climate policy on the labour market, usu-
ally with the use of computable general equilibrium models. For instance, Boeters and van 
Leeuwen (2010) used the WorldScan impact assessment model to examine the effect of 
emission reductions in several European countries. Montgomery (2009) studied the conse-
quences of the American Clean Energy and Security Act of 2009 for the labour market in 
US. Their model takes into account that wages cannot fully adjust to changes in demand. As 
a result, the policy leads to a crowding-out effect that results in a growth of unemployment.

However, the traditional economic models likely underestimate the effects of decarbonisation on 
the decline of employment. Standard economic models, including the MEMO model used in Part 2 of 
this report, assume a smooth flow of labour between sectors. In contrast, recent empirical evidence suggests that 
the flow of workers between sectors after major structural changes is slow (Autor et al., 2016; and Tyrowicz and van 
der Velde, 2014). If workers leaving that sector cannot easily adapt to the requirements of other sectors, then they 
will leave the labour market altogether and become inactive.

The determinants of employment decline

The scale of the decline in employment following decarbonisation depends on:

¨¨ the change in demand for coal after the deployment of RES technologies

¨¨ the change in demand for labour after the drop in demand for coal

¨¨ how fast the drop in demand will be and whether the drop in the number of workers could be achieved by natural 
attrition or whether it must involve lay-offs

¨¨ the opportunity of workers to find jobs in other sectors

¨¨ whether or not the revenue from the carbon tax is devoted to lower income tax.

Below, we discuss each element of this chain in turn.

The extent of the crowding-out of coal by other energy technologies depends on whether the deployment of re-
newables is accompanied by policies promoting the electrification of heating and transport. If it is, then additional 
power from renewables will be utilised to cover the additional demand generated by the electrification and it will not 
generate pressure to decrease the consumption of coal. However, the scope of the offsetting effect of electrification 
of transport and heating is limited. For instance, according to the projection made in Barton et al. (2013), in 2050 
a fleet of 24.7mln electric vehicles would require 37TWh, which is only 16% of the total electricity produced in Poland 
in 2050 (see the projections for the MOEM model). If the production of electricity from RES grows faster than the 
growth of additional demand from the electrification of heating and transport, the crowding-out of coal electricity is 
unavoidable.

As shown in Figure 5.3, contrary to other major coal-consuming European economies, almost all coal consumed in 
Poland is produced domestically. In addition, the possibilities of exporting coal from Poland are limited due to its high 
extraction cost, low quality, and large competition from Ukraine and Russia. This means that a reduction in demand 
for coal will be reflected proportionally in the output of the Polish mining sector, releasing factors of production that 
were previously engaged in that sector (see also the discussion on imported coal in Section 4.2).

Opposition  
towards labour 

restructuring in Poland 
can be strengthened by the 

experience of the past transition, 
which was not fully successful – 
a large proportion of miners left 

the labour force altogether 
instead of finding new 

employment.

5.	Risks	associated	with	decarbonisation	pathway	 43



Figure 5.3. Coal production vs coal consumption in Poland and selected other EU countries
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The opposition towards labour restructuring can be strengthened by the experience of the past 
transition, which was not fully successful: many miners left the labour force instead of finding 

new employment. Whether or not the future transition will generate the same problems de-
pends on the speed of the transition. The past transition involved mass lay-offs concentrated 
over a short period of time. If the transition involves lay-offs that are smaller and spread 
over a longer period of time, then most of the reduction in employment could be achieved 
by natural attrition. There are a number of workers in the sector who will retire in the next 

two decades. A report on coal transition in Poland (Witajewski-Baltvilks et al. 2018) indicates 
that under a hiring freeze, a phase-down of the coal sector spread across three decades would 

involve no lay-offs (see Figure 5.4)

Figure 5.4. Scenarios of employment reduction in the hard-coal sector due to outflows through retirement by 2030
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Witajewski-Baltvilks et al. (2018) indicates that if lay-offs are necessary, then laid-off workers can be employed in the 
industrial sector in the Silesia region, where unemployment is currently low (5%). Additional demand for labour can be 
created by putting in place a large-scale thermal retrofit project, which is needed to improve air quality in the region 
(Lewandowski et al. 2018).

If the revenue is used to lower distortionary income tax, the negative effect of carbon tax on employment will be 
smaller and, in some cases, it could become positive. This prediction, known in the literature as the double dividend, 
was studied, among others, by Babiker et al. (2003; for several world regions including the US and some European 
countries), Faehn et al. (2009; for Spain), Takeda (2007; for Japan) and OECD (2018; for the global economy). 

Concluding remarks and policy implications

Recent studies suggest that the risk of decline in employment under the decarbonisation pathway is manageable. 
The mitigation of the risk requires the state to play an active role. First, the government should clearly communicate 
to workers and firms in the mining sector that the scale-down of the sector is inexorable. This signal is important to 
prevent a large inflow of labour to the sector. If the inflow is limited, the fall in employment will be achieved by natural 
attrition and the costs of transition will be low. Second, macroeconomic studies suggest that the fall in employment 
associated with decarbonisation can be small if the government uses tax revenues from emissions to reduce the 
rates of other distortionary taxes. For instance, using the revenue from CO2 emission permits to reduce the rate of the 
income tax could increase the demand for workers in the other (i.e. non-mining) sectors of the economy.

6. Relative importance of risks – Fuzzy Cognitive Map
ALEXANDROS NIKAS AND HARIS DOUKAS

In this section we illustrate some potential consequences of the two pathways using a Fuzzy Cognitive Map (FCM): 
a diagram of cause-effect relationships that link policies with economic growth, produced following the engagement 
of stakeholders to assess the strengths of these relationships. The process of quasi-quantifying the relative impor-
tance of the risks using the stakeholder-driven FCM approach was carried out during a stakeholder workshop held in 
Warsaw in October 2017. 

6.1. Methodology
Knowledge embedded in stakeholders and participatory processes can significantly help to bridge knowledge gaps 
in transition studies (Kampelmann et al., 2017). Fuzzy cognitive mapping is a quasi-quantitative modelling technique 
that attempts to model and represent a group of stakeholders’ knowledge of a particular issue in diagrammatic form, 
thus allowing for ad hoc structures and flexibility to add the desired level of detail and complexity (Kosko, 1986). 
The elements that form the system under examination are connected by means of cause-and-effect relationships. 
Simulations of the derived model through artificial network techniques capture how causal propagation across the 
system reacts to induced shocks and assumptions formulated by stakeholders and/or data. The methodology helps 
experts to assess complex problems and reach difficult decisions primarily using their own knowledge by facilitating 
the extraction of this knowledge and using it to drive simulations and reach conclusions that would otherwise be 
challenging for these experts to reach on their own.

FCMs have long been used for policy analysis (Vergini and Groumpos, 2017), mostly regarding environmental and 
energy planning, as well as for other applications (Groumpos, 2010), including transitions and resilience (Olaza-
bal and Pascual, 2016), but have been underexploited in the domain of climate policy-making, in which the vast 
majority of scientific studies focus on climate-economy modelling. However, there have been instances of linking 
models with FCMs, in an effort to bring stakeholders closer to modelling analyses and to utilise the knowledge 
embedded in them in order to meaningfully inform the models (van Vliet et al., 2010; Mallampalli et al., 2016). In 
this report, we use the FCM methodology discussed in (Nikas and Doukas, 2016) as recently applied in assessing 
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energy-efficiency strategies (Nikas et al., 2018c) and selecting decarbonisation pathways in the Dutch power sec-
tor (Nikas et al., 2018b).

The FCM approach was carried out during a workshop entitled “Risks of low carbon transition in Poland” that took 
place in October 2017, in Warsaw. Eighteen Polish stakeholders, including representatives of private R&D firms in 
the power industry, stakeholders from public administration offices, and researchers, were engaged. In a dedicated 
session, stakeholders were informed about the scope and aims of the FCM methodology, guided throughout the pro-
cess, and prompted to provide input. To this end, the preliminary modelling results associated with the two pathways 
were presented to the stakeholders by the researchers at the Institute for Structural Research (IBS). The process was 
supported by crisp system maps (Nikas et al., 2017) that helped frame our approach. 

6.2. Mapping the knowledge of stakeholders
Before the workshop, researchers at the IBS had developed the FCM based on interviews, the literature, and their per-
sonal experience of studying the Polish power sector (Figure 6.1). The two pathways comprised seven policies in to-
tal. The coal-dependent baseline pathway consisted of political support for investments in coal, subsidies for R&D in 
coal technologies, and proper market design for domestic coal. The decarbonisation pathway, on the other hand, was 
based on RES auctions, the stability of RES support mechanisms, subsidies for R&D in renewables, and educational 
programmes and other labour policies aimed at helping mining workers adapt to a greener energy sector. Eleven 
uncertainties were selected, primarily drawn from studies focusing on relevant policies: the availability of foreign and 
domestic capital, barriers of entry for domestic firms, exogenous technological progress, gas and nuclear electricity 
costs, the extent to which miners will be able to adapt, gas prices, international relations, the EU’s attitude towards 
climate action, international coal prices, costs of domestic coal extraction, and the price of EUA. These uncertainties 
are salient both in the Polish domestic debate and the international academic debate on the consequences of decar-
bonisation that could be relevant for Poland; it should be noted that the list explored in this report is incomplete and 
requires further investigation. While constructing the FCM, the authors considered the various factors that linked the 
selected policies and uncertainties to long-term economic growth through cause-and-effect relationships. 

Stakeholders were each given a questionnaire, in which they were asked to assess the sign (i.e. positive if a positive 
change to one factor leads to a positive change of another factor, negative if a positive change to one factor leads to 
a negative change to another factor) and importance of each one of the identified relationships among the interlinked 
concepts of the FCM. Their input was quantified in [-1, 1] and a mean weight was calculated for the whole group of 
stakeholders in order to construct one global FCM (Figure 6.1). The grey circles denote the various factors at play: 
RES-boosting policies, coal-supporting policies and uncertainties, while white circles denote all other system con-
cepts. The circle denoted by the letter G is the end goal. Furthermore, positive relations between factors are indicated 
by solid lines of variable thickness depending on the weight attached to them, while negative relations are shown 
using dotted lines.
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Figure 6.1. FCM resulting from the Polish decarbonisation debate

Notes: Starting from the policy instruments and uncertainties, the identified causal propagation to the end goal, i.e. G =  Long-term 

economic growth, includes the following system concepts: 

R1 =   Availability of foreign and domestic capital, R2 =  Barriers of entry for domestic firms, R3 = Exogenous technological progress, 

R4 = Costs of gas and nuclear, R5 = Non-adaptability of miners, R6 = Price of gas, R7 = International relations, R8 = European 

attitude towards mitigations, R9 = International coal prices, R10 = Costs of domestic extraction, R11 = Price of permits, 

P1 =  Market mechanism for intermittent RES, P2 = Stability of support policies, P3 = Subsidies for RES R&D, P4 = Switch in schooling 

oriented on new (green) jobs, P5 = Political support for investment in coal power plants, P6 = Subsidies for coal technologies 

R&D, P7 = Market design for domestic coal, 

S1 =  Intermittent RES deployment, S2 = Sufficient finance, S3 = Insistence on coal, S4 = Demand for RES installations, S5 = Demand 

for RES installations by domestic producers, S6 = New (green) jobs, S7 = Traditional jobs, S8 = Demand for gas, S9 = Energy 

security, S10 = Energy system costs, S11 = Foreign progress absorption capacity, S12 = Long-run reduction in RES installation 

costs, S13 = GHG emissions and pollution, S14 = Import of coal, S15 = International reputation and finance, and S16 = Com-

petitiveness of coal electricity. 

6.3. Simulations
The two pathways were simulated to capture their relative performance against five different socioeconomic sce-
narios describing different levels of mitigation and adaptation challenges. The first scenario, the ‘Green road’, is 
an optimistic scenario featuring low challenges overall; the second scenario, ‘Middle road’, describes a world with 
intermediate climate action challenges; the third scenario, ‘Rocky road’, describes a pessimistic future in which both 
mitigation of and adaptation to climate change are considered difficult; the fourth scenario, ‘Divided road’, features 
high adaptation challenges but assumes that mitigation is relatively easier; while the fifth scenario, ‘Fossil-fuelled 
road’, features high mitigation but low adaptation challenges. These scenarios and the factors describing them are 
borrowed from the Shared Socioeconomic Pathways literature (O’Neill et al., 2017).
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The results show that, from the involved stakeholders’ perspective, there are important channels through which poli-
cies supporting RES deployment may have a positive effect on economic growth. Channels transmitting the positive 
effect of policies supporting coal consistently appear to be weaker across all five socioeconomic scenarios, accord-
ing to the FCM model.

In particular, the analysis shows that the more catastrophic the scenario is considered to be in terms of mitigation 
and adaptation challenges, the worse the coal-oriented policy pathway performs compared to the decarbonisation 
pathway. In fact, in the ‘Rocky’ and ‘Divided road’ scenarios, in which adaptation challenges are expected to be signif-
icant, the gap between the impacts of the two pathways on long-term growth appears to grow (e.g. Figure 6.2). On 
the other hand, in both the ‘Green’ and the ‘Fossil-fuelled road’ scenarios, which assume low adaptation challenges in 
terms of economic growth, the two policy pathways are very close to each other in terms of their performance, but 
with the RES pathway again slightly outranking the coal-oriented one (e.g. Figure 6.3).

Figure 6.2. Uncertainty concept values and FCM results for the decarbonisation (green) and baseline (grey) 
pathways, in the ‘Rocky road’ socioeconomic scenario

FCM results for the “Rocky Road” scenario

-0
.2 0

0.
2

0.
4

0.
6

0.
8 1

Concept values at the end of FCM simulations

Availability of foreign and domestic capital
Barriers of entry for domestic firms
Exogenous Technological Progress

Costs of gas and nuclear
Non-adaptability of miners

Price of gas
International relations

European attitude towards mitigations
International coal prices

Costs of domestic extraction
Price of permits

RES: Ecocnomic growth
COAL: Economic growth

Notes:	RES:	Economic	growth	and	COAL:	Economic	growth	values	reflect	the	effect	of	RES	and	coal-supporting	policies	on	eco-

nomic	growth,	respectively.

Another significant finding is that, among the seven policy strategies, only political support for coal plant investments 
appears to always affect economic growth adversely. All other policy strategies, when assessed individually, appear 
to have positive impacts on national economic growth, in most scenarios.

The FCM exercise reveals important channels that transmit the effects of policies supporting RES or coal on long-
term economic growth. Since some of these channels are not considered in most economic models, predictions of 
those models may be biased. FCM simulations illustrate that, if these channels are taken into account, the prediction 
that the decarbonisation pathway is associated with smaller growth could be reversed. 
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Figure 6.3. Uncertainty concept values and FCM results for the decarbonisation (green) and baseline (grey) 
pathways, in the ‘Green road’ socioeconomic scenario

FCM results for the “Green Road” scenario
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PART 3

Implementation risks
Neither of the pathways defined in Part 1 could be implemented in a smooth manner without 
the adequate support of stakeholders. In this part we discuss such support as it pertains to 
three different levels. In Section 7 we explore the views of a group of experts on the trans-
formation of the power sector, including representatives of the public sector, NGOs, and ac-
ademia. In Section 8 we discuss support for the implementation of the pathways by citizens 
and local communities. In Section 9 we analyse under what conditions the pathways could 
gain the support of political parties and in which circumstances the issue of transformation 
could gain salience in political debate.



7. Stakeholders support
ALEKSANDER SZPOR

Internal and external pressure on energy transformation in Poland is expected to substantially affect Poland’s future 
energy mix. Yet in the face of a lack of long-term energy policy strategies, the scope of possible scenarios is wide. 
To narrow down the number of possible scenarios, an analysis externalising the process of their formation was 
conducted. To that end, a survey of a group of experts participating in the public debate on low-emission transition in 
Poland was carried out. The participants were asked about perceived opportunities related to the future energy trans-
formation, the main criteria for the selecting the components of the future energy mix, and its possible composition.

7.1. Basic information about the study
The study was conducted on 7 November 2017 during an open debate titled ‘The Polish Energy Mix’ organised by 
Procesy Inwestycyjne (Ltd), a company oriented towards creating discussion forums on the topic of transformation 
to a low-carbon economy. 

A paper-based questionnaire was distributed among the debate participants. It contained seven questions. The first 
two questions were intended to identify the participants’ status within the energy sector; the first was a closed ques-
tion and the second was semi-open. The remaining questions were closed.

Fifty-three participants of the debate filled in the questionnaire. All of those surveyed answered the first question. 
For the second question, one of participants did not mark an answer and another one did not elaborate after marking 
the answer ‘other’. For the third question, which was composed of three elements, one of those surveyed answered 
only with regard to one element. In the fourth question, twenty participants answered incorrectly (the most common 
mistake was attributing a value to all eight elements of the answer instead of only the five elements asked for) and 
three did not answer at all. In the fifth question, four participants did not answer at all, and nine surveyed answered 
incompletely or incorrectly (their answers did not add up to 100). All of those surveyed answered the sixth question 
and one participant did not answer the seventh question.

The aim of the survey was to discover their relation to and interest in the future energy transformation in Poland in the 
context of the EU’s climate and energy policy. 

7.2. Results of the survey

Participants professional profiles

QUESTION	1.	Please	indicate	the	area	of	your	professional	activity	 
(it	is	possible	to	choose	more	than	one	answer)	

The most commonly indicated area of professional activity (Figure 7.1.) was the private sector – around 45% (26 
answers), followed by the public sector – around 26% (15 answers). The NGO sector was indicated by around 17% 
(10 answers), and academia by around 12% (seven answers). Among those surveyed, no one indicated a trade union.
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Figure 7.1. Area of professional activity, number and 
share of responses (%)

Figure 7.2. Sector of professional activity, number and 
share of responses (%)
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Most respondents chose one area. Five respondents chose two answers. Among these five, two indicated the public 
and private sectors, one indicated public sector and NGO, one indicated the public sector and academia, and one 
indicated NGO and academia. 

QUESTION	2.	Please	indicate	the	sector	of	your	professional	activity	 
(it	is	possible	to	choose	more	than	one	answer)

The most commonly indicated sector of activity (Figure 7.2) was energy – around  44% (36 answers), the environment 
or climate – 15% (12 answers), heating – 9% (7), building and construction – 6% (5), banking and finance – 5% (4), 
coal mining – 3% (2), transport – 3% (2), agriculture – 1% (1), chemistry – 1% (1). The answer ‘other’ was indicated 
by around 14% (11), of which consulting was chosen by 5% (4) and 1% (1) each gave: technology transfer; structural 
funds; statistics; business self-government; economics; economy. One interviewed (1%) indicated the answer ‘other’ 
but without naming it. One respondent failed to answer this question.

The majority of respondents (32) indicated only one sector of professional activity. Two sectors were indicated by 
10 respondents, three sectors were indicated by six respondents and four sectors were indicated by two respondents. 

Relationship to the future energy transformation in Poland

QUESTION	3.	In	your	opinion,	what	impact	will	the	accomplishment	of	
the	three	main	EU	climate-policy	goals	included	in	climate	and	energy	
package	for	the	years	2020	and	2030	have	on	the	development	of	the	
Polish	economy?

The respondents believed that the accomplishment of the three goals included in the climate and energy package 
would have a positive impact. The most negatively assessed goal of the package was the limitation of GHG emissions 
(Figure 7.3). Four surveyed assessed it as having a negative impact, nine as having a rather negative impact, eight as 
neutral, sixteen as rather positive, and fifteen as positive. (The average score was 3.6)

0
0
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The impact of the second of the goals – increasing the share of RES in the energy production – was not assessed 
as negative by anyone. Six surveyed assessed it as having a rather negative impact, eight as neutral, eleven as rather 
positive and sixteen as positive. (The average score was 4.1)

The majority of those surveyed (38) assessed the impact of the third goal of the package – improvement of the ener-
gy efficiency – as positive. Eight surveyed assessed it as rather positive, four as neutral and one as rather negative. 
No one assessed it as negative. (An average score of 4.6)

Figure 7.3. The number of individual assessments for particular goals of the package
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QUESTION	4.	What,	in	your	opinion,	should	be	the	most	important	
criteria	when	choosing	the	best	options	for	the	energy-sector	
transformation	in	Poland?	Please	choose	the	5	most	important	criteria	
and	attribute	to	them	a	value	from	1	to	5,	where	1	is	the	least	important	
criterion	and	5	is	the	most	important	criterion	(each	value	can	be	
attributed	only	once).

According to the respondents, the most important criterion is the security of energy supply (Figure 7.4). Twenty-six 
respondents indicated that this is one of the five most important criteria The second was the impact on environment 
(among the top five criteria for 24 respondents), participation in advanced technologies (for 20 respondents), keeping 
the prices of energy low (for 19 respondents), and the use of domestic capital (for 18 respondents). According to 
the stakeholders, the least important criteria were CO2 emission reductions (17), the impact on employment (11) and 
social acceptance for particular technology (six).7 

7  For the sake of simplicity this measure can be deducted from the number of non-attributions (zeros) which is negatively 

correlated with the importance of each criterion. 

54 RISKS ASSOCIATED WITH THE DECARBONISATION OF THE POLISH POWER SECTOR



Figure 7.4. Distribution of answers on the importance of the criteria for energy-sector transformation in Poland
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QUESTION	5.	In	your	opinion,	from	which	sources	should	electricity	be	
produced	in	Poland	in	2030	and	in	2050?	Please	indicate	the	answers	
below,	attributing	to	each	source	a	percentage	of	the	total	production	
(so	that	the	sum	of	the	answers	is	100%).

The surveyed indicated that electricity production in 2030 should be based on coal as the main fuel (around 50%), 
and 18% from RES such as wind, water, and solar. 12% should be provided by gas and also 12% biofuels. The share of 
nuclear should be at the level of 8% and 2% should come from other fuels. (Figure 7.5)

In 2050 the electricity production – in the opinion of those surveyed – should be based first and foremost on RES 
(around 29%). Coal should be responsible for 25% of the mix, gas for 17%, nuclear energy 16%, biofuels 14%, and 
other sources 7%. (Figure 7.6)
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Figure 7.5. Electricity production mix in 2030 based on 
the arithmetic average from individual responses

Figure 7.6. Electricity production in 2050 based on the 
arithmetic average from individual responses
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QUESTION	6.	How	would	you	assess	the	quality	of	research	indicating	
that	human	activity	is	the	main	cause	of	climate	change?	Please	
indicate	the	closest	corresponding	answer	to	your	views.	

The largest group of surveyed (19) indicated that the results of the research presenting human activity as the main 
cause of climate change are subject to uncertainty and they should be improved before they are taken into consider-
ation. (Figure 7.7) Sixteen of those surveyed indicated that the results of the research are subject to uncertainty, and 
that they should be further improved and taken into consideration cautiously. Thirteen respondents expressed their 
view that the results are convincing and four said that the research results are tendentious and untruthful. One person 
did not have an opinion in this matter.  

Figure 7.7. Distribution of answers (1–5) to question  
6 presented in both values and in percentages

Figure 7.8. Distribution of answers (1–5) to question  
7 presented in both values and in percentages
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QUESTION	7.	What	importance	for	the	future	development	of	Poland	
should	the	establishment	of	low-carbon	transformation	have	as	the	
strategic	priority	in	domestic	policy?	Please	assess	this	using	a	scale	
from	1	to	5,	where	1	is	not	important	and	5	.

The average score among those surveyed in relation to assessing the importance of the transformation to a low-car-
bon economy as the strategic priority in the domestic policy was 4.04 (in the scale 1-5). (Figure 7.8)

7.3. Summary and interpretation of the results
The group of surveyed stakeholders was internally diversified both in terms of their area and sector 
of professional activity. As for the area, the private sector was indicated the most common, with 
the public sector in second place. As for the (economic) sectors in which they worked, energy, 
including heating, was indicated by more than half of the total number of respondents. The 
next two largest groups were the construction and environment sectors. Although the group 
of respondents was diversified, the lack of trade union representatives seems significant and 
may have had an important impact on the results. 

The majority of stakeholders positively assessed the impact of climate and energy package on 
the Polish economy. The energy-efficiency target was assessed as positive (beneficial or rather 
beneficial) by the largest share of the surveyed), and the reduction of CO2 emissions earned the 
smallest share (yet was still an issue for the majority of respondents). 

In the question related to eight proposed criteria for the selection of the energy transformation pathways, security of 
supply was indicated by the highest number of participants among their top five. Additionally, this criterion was also 
chosen as the most important by the highest number of participants. Other important criteria were the impact on 
the environment, participation in the development of advanced technologies, and keeping the prices of energy low.

As for the future energy mix, those surveyed indicated a process of gradual phase-down of coal and the development 
of RES. Between 2030, when coal will constitute half of the energy mix, and 2050, its share will be reduced by a factor 
of two. In the meantime, the share of nuclear will increase by the same factor, from 8 to 16%. The role of biofuels 
will remain almost constant, whereas the share of other RES will increase by a third. These answers suggest that the 
decarbonisation pathway discussed in Part 1 of the report would find support among stakeholders.

A quarter of those surveyed regarded research indicating human activity as the main source of climate change as un-
conditionally credible. More than a quarter expressed the view that the research should be further improved and taken 
into consideration with caution. Both groups combined constituted slightly more than a half of those interviewed. 
The largest group (35%) indicated that in their view the research is a subject of uncertainty, so it should be improved 
before it is taken into consideration. Less than a tenth of respondents indicated that the research is tendentious and 
untruthful.

Those surveyed agreed that establishing low-carbon transformation as the strategic priority in domestic policy is 
important.  

Security of supplies is a major 
concern in the Polish debate on 

energy transformation.
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8. Implementation risk at the local level8

ANDRZEJ CEGLARZ

In this section we discuss the potential support for the implementation of the selected energy technologies by 
citizens and local communities. We focus on: transmission infrastructure (the extra-high-voltage, 200-750 kV, and 
high-voltage, 110 kV, transmission lines), the creation of new coal mines (in the case of baseline scenario requiring 
resources for coal-fired power plants), and selected technologies of renewable energy sources (wind and solar). The 
analysis is based on a literature review. 

8.1. Framing the problem
Regardless of which scenario is implemented until 2050 in Poland (the coal-based baseline pathway vs the RES-
based decarbonisation pathway), substantial investments into new energy infrastructure are essential. The main 
reasons for this include growing electricity demand, the push for decarbonisation from the EU, as well as fact that 
existing infrastructure is ageing. Such investments will represent a challenge not only in relation to the additional 
costs required, but also due to social reluctance towards the installation of large energy infrastructure at the local 
level and an unstable regulatory framework. 

There are well-documented and analysed cases of public opposition towards the installation of energy infrastructure 
and its drivers worldwide (see: Cain and Nelson, 2013; Ciupuliga and Cuppen, 2013; Cohen et al., 2014; Friedl and 
Reichl, 2016; Ruud et al., 2011; Vorkinn and Riese, 2001). While the academic discussion about the meaning of social 
acceptability of energy infrastructure is ongoing and scholars are constantly developing new dimensions in this area 
(see: Batel et al., 2013; Cohen et al., 2014; Dermont et al., 2017; Devine-Wright et al., 2017), their conclusions fre-
quently share a similar critique of insufficient, top-down decision-making processes regarding the building and siting 
of infrastructure (Aas et al., 2014; Batel and Devine-Wright, 2015; Keir et al., 2014; Whitton et al., 2015). Although in 
some cases such a top-down approach is changing, and some companies are beginning to implement innovative 
approaches that involve and empower affected stakeholders (Komendantova and Battaglini, 2016; Komendantova et 
al., 2015; Späth and Scolobig, 2017), these new approaches still might be not enough to address public concerns if 
the regulatory system remains unclear and unstable (Battaglini et al., 2012). 

The topic of social acceptability of energy infrastructure in Poland (including the development of participatory plan-
ning procedures) has recently gained attention from scholars and policy-makers, but it remains insufficiently regu-
lated by law. If the lack of acceptability of energy infrastructure and the demands of citizens at the local level remain 
ignored, problems may arise when it comes to the full implementation of any of 2050 scenarios: no matter what di-
rection Poland’s overall energy policy will take, the infrastructural investments will need to take place at the local level. 

The following analysis of this risk will cover recent developments in Poland in the social acceptability of energy in-
frastructure, including the potential conflicts around it and features of the decision-making processes. It will discuss 
selected RES technologies (wind and solar), high-voltage (110 kV) and extra-high-voltage (200–750 kV) transmission 
lines, and the creation of new coal mines in the baseline pathway that require resources for coal-fired power plants. 
However, it shall not consider other socially controversial energy technologies or resources, such as nuclear power or 
shale gas, which could also lead to social conflicts and a lack of acceptability (see Lis and Stankiewicz, 2017; Mrow-
inski and Stadnicki, 2014; Szulecki et al., 2015).

8 The results of this section are based on a literature review and interviews with four stakeholders from the government, politi-

cal advisory, and industry sectors. The authors would like to express their gratitude to the stakeholders for their time and for 

providing important inputs that greatly contributed to this section
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8.2. Acceptability of transmission infrastructure
One of the most contested forms of energy infrastructure globally are high and extra-high voltage transmission power 
lines. The lack of acceptability of such grids results from health concerns (related to electromagnetic fields), envi-
ronmental risks, visual and noise impacts, the loss of property values, land-use attributes, and psychological stigma 
(Cain and Nelson, 2013; Cotton and Devine-Wright, 2012). Although the broad public and affected stakeholders are 
often aware of the need for new power lines and there are ways of addressing many of abovementioned reasons 
behind existing negative attitudes, public opposition still persists, partly because of the perceived inadequacy of the 
stakeholder engagement and participation processes undertaken by the Transmission System Operators (TSOs) and 
the public authorities (Keir et al., 2014; Porsius et al., 2016). 

Existing investigations (Cieszkowski, 2017; Dołęga, 2014) highlight mistakes related to the planning procedures and 
participation processes made by the Polish TSO, Polskie Sieci Elektroenergetyczne (PSE), and by the local munici-
palities. This is in line with the opinion of the biggest Polish protest group, an association of at least 13 local mu-
nicipalities and many civil initiatives in central Poland, which have blocked a 400 kV power line Kozienice-Ołtarzew, 
and whose protests have gained national attention. As one activist put it, ‘We are not against the line, we are against 
incompetent and non-transparent decisions being made behind the back of society’ (SGKKO, 2018). Currently, PSE is 
pursuing several projects that together constitute the biggest investment programme in its history. Any delay would 
generate significant additional costs and negatively influence the modernisation and restructuring of the whole do-
mestic power transmission system. 

The lessons learned from the Kozienice-Ołtarzew case led to an internal change of the Polish TSO and resulted in the 
development of a comprehensive investment decision-making scheme. Previously, project preparation, planning, and 
permitting had been commissioned to various subcontractors. In May 2017, PSE established an internally Central 
Investment Unit that would be responsible for all steps in the project investment, including monitoring of the con-
struction stage when that task is subcontracted to an external company. This reorganisation has helped to avoid an 
unclear division of responsibilities and perceived non-transparency. Additionally, PSE has developed a new commu-
nication and stakeholder-involvement approach that explains in detail the need for power lines, the decisions behind 
selected lines, and the expected environmental impact. This change has given PSE a higher level of control over the 
investment and increased its credibility in the perception of stakeholders.

One can highlight three important characteristics of the interactions between TSO and stakeholders in Poland. First, 
the most challenging and time-consuming issue in a (mandatory) stakeholder participation process are the nego-
tiations on the transmission easement. This legal mechanism, which is enshrined in Polish legislation, guarantees 
a company permanent legal title to land while it is carrying out an investment in and later maintenance of transmis-
sion infrastructure. It determines the compensation quotas for stakeholders whose property a transmission line 
would run through. These quotas are calculated using a different method from that based on selling rights, and this 
difference and its misinterpretation often leads to disputes. Second, unlike in many West and Nordic European coun-
tries, the environmental and landscape impacts do not play such an important role in the stakeholder engagement 
process. This also results from (big) environmental NGOs not having enough capacities to deal with environmental 
impacts of the development of new transmission power lines. If environmental and landscape issues are discussed 
during the decision-making process, they are mostly raised either by single individuals or by locally based NGOs and 
citizen initiatives. In this context, the fulfilment of environmental protection and nature conservation measures takes 
a very institutionalised form, which the General Directorate for Environmental Protection (with its restrictive environ-
mental standards) oversees. From the perspective of the TSO, the most important aspect that determines the general 
approach to environmental protection is related to the power lines’ proximity to residential buildings. When it comes 
to taking siting decisions, this aspect is especially challenging, due to the very dispersed character of residential de-
velopment in Poland. Third, the shape of stakeholder participation and engagement processes fully depends on the 
approach developed and applied by PSE – which is neither regulated nor recognised by the Energy Regulatory Office 
(Urząd Regulacji Energetyki), and specific rules relating to its design (e.g. environmental, ownership, permitting, and 
stakeholder empowerment issues) are covered by various dispersed and uncoordinated pieces of legislation.
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8.3. Acceptability of new coal mines
Although according to some stakeholders Poland might need to import substantial amounts of coal from abroad 
(Forum Energii, 2017), following the coal-based pathway until 2050 would still require decisions to be taken about 
the siting of new coal mines. Existing studies show relatively high social support for extracting coal from new mines, 
including both hard coal and lignite (Badera and Kocoń, 2014; Forum Energii, 2017). However, some stakeholders note 
that they only take into account a small range of selected geographical areas and they do not discuss in a comprehen-
sive way the strongly contested social, health, economic, and environmental impacts of lignite and hard-coal mines 
(see for example: StopKopalni, 2018). Additionally, building new coal-fired power plants might turn out to be unprof-
itable in future if the costs of alternative technologies keep falling, the prices of coal on international market are low, 
and the costs of CO2 allowances under the EU Emission Trading System increase. This raises questions about their 
overall investment potential (Zasuń, 2016, 2018). Nevertheless, notwithstanding issues related to the profitability of 
new coal-fired power plants and coal-mining sites, existing planning and decision-making procedures are thought to 
be insufficient, non-participatory, and conflictual (Badera and Kocoń, 2014).

8.4. Acceptability of RES installations
Although in Poland the public generally supports RES as a preferred source of energy (Gwiazda 

and Ruszkowski, 2016), this is not entirely reflected at the local level. Over recent years, the 
most publicly discussed controversies related to the siting of infrastructure have concen-

trated around renewable energy sources, especially wind energy. In 2007–2014, local 
conflicts around wind energy took place in over 100 municipalities throughout the coun-
try (Bednarek-Szczepańska, 2016; Bednarek-Szczepańska and Dmochowska-Dudek, 
2017). The phenomenon of the ‘national-local gap’ is not new (Bell et al., 2005; Bell et 
al., 2013), and while it requires adjustments taking into account place-based elements 
(Batel and Devine-Wright, 2015), such an approach could help explain specific features 

of the opposition to wind energy in Poland. This opposition is characterised by ad hoc 
activities, mostly directed against other neighbours inside a community or, less often, 

against other communities, that would profit from the siting of a wind turbine on their land 
(Bednarek-Szczepańska, 2016; Dmochowska-Dudek and Bednarek-Szczepańska, 2018). This 

implies that the most important factor behind a lack of acceptability of the (wind) energy infrastruc-
ture in Poland lies in the feeling of community injustice and non-fairness (see: Gross, 2007). Indeed, while analyses 
show that there is still untapped wind-power potential in Poland, barriers are formed due to the insufficient and 
non-transparent planning, permitting, and participatory procedures (Brzezińska-Rawa and Goździewicz-Biechońska, 
2014; Igliński et al., 2016). This was also reflected in two reports published by the Supreme Audit Office (NIK, 2014; 
2016, but see also; PSEW, 2016). These developments have contributed to wind energy and turbines a becoming 
a significant political issue, which resulted in the introduction in 2016 of legislation strictly limiting the development 
of new wind farms in built-up areas and on land of significant environmental value. In consequence, up to 90% of new 
and ongoing wind-energy investments have been blocked, which has substantially slowed down the dynamic growth 
of wind-energy capacity (by almost 700% in 2005–2016) (Piszczatowska, 2016; PSEW, 2017).

In contrast to this, solar energy is considered in Poland to be the most accepted form of renewable energy technology 
(IEO, 2017). However, although since 2014 it has become the most dynamically developing source of energy in Poland 
(Skłodowska, 2018), the share of the electricity coming from solar energy is exiguous and as of 2016 it amounted 
to around 200MW, which is 2.3% of RES capacity and 0.5% of the capacity of the national power system (IEO, 2017). 
As such, Poland is one of the lowest generators of solar power in the EU (Derski, 2017). This outcome is a result 
not only of the different geographical and weather conditions determining solar irradiation levels, but also the unfa-
vourable support system and unstable regulation in past years (Derski, 2017; IEO, 2017). The Polish government has 
announced ambitious plans to develop solar energy, but continuously ongoing changes within the regulatory system 
might negatively affect the realisation of these plans (Skłodowska, 2018).

The most 
controversial and 

contested technological 
solutions for local societies are: 
high-voltage transmission lines, 

the construction of new coal mines, 
especially open-pit lignite mines; 

and renewable energy system 
installations such as onshore 

wind turbines.
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8.5. Concluding remarks
All of the examples described above show that, regardless of which energy pathway is implemented in Poland until 
2050, building any new electricity-related infrastructure can be challenged by a lack of acceptability at the local level. 
Since all of the presented technological choices have their pros and cons, the social responses towards them are de-
termined not only by their physical characteristics, but also by the way in which decisions about a specific investment 
are taken. In this manner it is clear that currently existing laws and procedures in Poland regarding the decision-mak-
ing processes in the aspect of the electricity infrastructure remain insufficient. 

Decision-making processes that are perceived by citizens as exclusive and non-transparent, and characterised by 
a top-down approach and non-compliance, can lead to an increase in public opposition, which, in turn, can trigger an 
unstable environment for investors. A lack of social acceptability will likely gain in strength in the future, especially 
due to increasing affluence levels in society and growing demands to realise higher-level needs, such as participation 
in and co-ownership of decision-making processes (and, of course, ownership of the energy infrastructure itself). 

It appears that the current research is not sufficiently focused on understanding stakeholder engagement and deci-
sion-making processes regarding energy infrastructure in Poland. Insufficient research can be both the result of and 
the reason for insufficient use of evidence-based recommendations in the policy-making process. It is important to 
further investigate the Polish specificity of described processes and mechanisms in the context of international re-
search progress (such as was carried out in research by Dmochowska-Dudek and Bednarek-Szczepańska, 2018) and 
to cross-fertilise it with research on governance, participation, and decision-making and policy-making processes in 
other sectors, such as the advanced level of research on nature conservation (Cent et al., 2014; Maczka et al., 2016; 
Niedziałkowski et al., 2018; Niedziałkowski et al., 2016; Pietrzyk-Kaszyńska and Grodzińska-Jurczak, 2015). This 
would enable a comparison of the results with outcomes obtained elsewhere and to adjust any lessons learned to 
Polish conditions. 

9. Salience of climate change among political parties
BAIBA WITAJEWSKA-BALTVILKA

In this section we describe the factors that shape political party competition on climate-change and environmentalism 
issues. We focus on socioeconomic inequality, public opinion, and the strength of trade unions. We describe the key 
findings from the quantitative study on political parties’ positions in 22 European countries during electoral campaigns, 
as well as two case studies: Poland in 2011 and Germany in 2013.9

Political parties’ preferences on climate policy are important for at least two reasons. First, political 
parties and, in particular, party leaders, are key actors in shaping public policies at both the national 
and international level. They can either hinder or propose climate-change mitigation policies (e.g. 
Birchall, 2014; Harrison, 2010 & 2012; Jensen and Spoon, 2011). Second, political parties play an 
important role in shaping people’s attitudes by either trying to justify unpopular climate-mitigation 
policies or arguing against them (e.g. Brulle et al., 2012; Steenbergen et al., 2007). 

The literature on party politics and climate change identifies the following key factors to explain 
the conditions on which political parties tend to compete on climate change and environmentalism. 

First, political parties tend to talk about environmentalism and climate change less when inequality increas-
es (Witajewska-Baltvilka, 2018). This might be due either to other issues becoming more important for voters or 

9 The section is the summary of the paper: Witajewska-Baltvilka, B. (2018). Political parties and climate change policy: 

why do parties sometimes talk about it, but sometimes keep silent. IBS Working Paper 05/2018. http://ibs.org.pl//app/

uploads/2018/09/IBS_Working_Paper_05_2018.pdf [date of access: 08.11.2018]

Political 
parties express 
less interest in 

environmental issues 
in countries with high 
inequality and when 

the economy is in 
recession.
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because of the associated costs of environmental protection and climate-change policies, which disproportionally 
affect the poorest citizens. Interestingly, and somewhat unexpectedly, economic conditions, as measured by real 
GDP per capita, do not seem to determine party issue competition on environmentalism and climate change (Wita-
jewska-Baltvilka, 2018). However, as Carter, Ladrech, and Little (2014) argue, events such as economic crises can 
negatively impact countries’ incentives to implement various climate policies.

Second, more favourable public opinion on the environment is associated with the issue of environmentalism or 
climate change having a higher salience for a party (Witajewska-Baltvilka, 2018). Indeed, one of the key reasons why 
political parties did not talk about environmentalism or climate change either in Germany 2011 or in Poland 2013 was 
the relatively low salience of these issues among voters. None of the major political parties tried to highlight climate 
change or environmentalism as one of its key campaign issues (i.e. to increase its salience among voters) despite the 
fact that, for example, in Poland there was a window of opportunity due to it having the EU presidency. However, given 
the strong reverse causality between public opinion and party issue salience, as often discussed in the literature, one 
should treat the explanatory power of this factor with caution (Witajewska-Baltvilka, 2018).

Third, some institutional factors such as patterns of inter-party competition/dynamics also seem to play a role, but 
this factor appears to be vaguely defined. As Carter and Jacobs (2013) argue, ‘[p]arty politics, especially where party 
competition generates a “competitive consensus”, can be important for both initiating and prolonging policy change 
in parliamentary systems’ (Carter and Jacobs, 2013: 125). Hence, weak competition, as well as certain patterns of 
coalition incentives, can help explain why climate policy does not appear on the agenda of political parties (Carter, 
Ladrech and Little, 2014). Here, the role of the party leadership is crucial. 

Fourth, fuel dependency and the role of coal-industry business groups is yet another factor that shapes party issue 
competition on environmentalism and climate change. As Lachapelle (2013) argues, countries with substantial ex-
ports of mineral fuels are less likely to implement any type of climate policy. Indeed, a Polish 2011 case study clearly 
points to a ‘fuel-dependency narrative’. Voters believe that turning away from coal and introducing alternative sources 
of energy would create an economic downturn and unemployment and, at least partly, such a narrative is sustained by 
coal-industry companies. In Germany, where the production of coal is lower, further transition towards clean energy 
is supported by all political parties, and the opposition from coal industry does not seem so strong (Witajewska-Balt-
vilka, 2018).

Finally, in countries with stronger trade unions, party competition on environmentalism and climate change is low-
er (Witajewska-Baltvilka, 2018). As already argued in the literature and demonstrated by a few case studies (e.g. 
Ladrech, 2011; Carter, Ladrech, and Little, 2014), trade unions seem to be particularly concerned about losing jobs, 
which may accompany changes in production and consumption and the implementation of climate-change policies. 
The Polish 2011 case study approves this. As already mentioned, the transition to carbon-free energy is regarded as 
threat to the national economy by trade unions.

To summarise, such factors as socioeconomic inequality, the strength of trade unions, and public opinion levels 
appear to be the most important factors shaping competition between parties when it comes to climate-change and 
environmentalism issues. The lower the socioeconomic inequality, the more environmentally friendly public opinion 
is, and the weaker the trade unions are, the more likely it is that political parties will give prominence to environmental 
and climate-change policies. 

62 RISKS ASSOCIATED WITH THE DECARBONISATION OF THE POLISH POWER SECTOR



Conclusions
In this paper we examined the evolution of the power sector and the economy under two alternative pathways: the 
baseline pathway, which assumes no constraints on emission reduction, and the decarbonisation pathway, which 
assumes a threefold reduction in emissions. Our analysis predicts that the least-cost option under the constraint of 
emissions reduction involves the gradual replacement of coal with a mix of onshore wind, nuclear, natural gas, biogas, 
and biomass. In contrast, if we abandon the emissions reduction constraint, the least-cost option involves a moderate 
decline in the consumption of coal, mostly after 2030. Over the projected period (2015–2050) the decarbonisation 
pathway requires more capital expenditure (necessitated by a larger scale of investment in the construction of RES 
installations and gas power plants) than the pathway with no emission reduction constraints.

The macroeconomic analysis indicates that the baseline pathway is associated with higher GDP and consumption 
than the decarbonisation pathway. That is because the additional investment required in the decarbonisation pathway 
crowds out investment in the other sectors of the economy, such as services, particularly in the short term. However, 
the difference in GDP and consumption between both pathways is very small and should not be a decisive factor for 
policy-makers. 

The key results do not change if we perform the analysis for alternative assumptions regarding the evolution of EU 
ETS prices and intermittent renewable energy costs, as well as the availability of nuclear technology. Low EU ETS 
prices result in some growth in coal use in the unconstrained pathway (instead of nuclear energy deployment), but do 
not have a significant influence on the optimal energy mix in the decarbonisation pathway. Surprisingly, the optimal 
mix in both pathways does not change substantially in the case of lower or higher trajectories of installation costs of 
major intermittent RES (solar PV, onshore and offshore wind). However, the installation costs do have an impact on 
the projected capital expenditure, and this is particularly important in the decarbonisation pathway, where a larger 
deployment of RES is assumed. Finally, in the absence of nuclear power in the energy mix, the role of offshore wind 
grows. Still, the substitution is not full, and as a result this scenario may lead to power shortages, particularly in the 
decarbonisation pathway.

We find that the largest economic loss associated with the decarbonisation pathway is observed under the scenario 
of low ETS prices. However, even in that scenario, the loss is not significant (in 2030, GDP in the decarbonisation 
pathway is 2% lower than in the baseline pathway) and transitory (the difference in GDPs is close to zero in 2050).

In Part 2 we discussed the risks of both pathways that were not taken into account in the model simulations in Part 
1 of our study. The risks associated with the decarbonisation pathway include the loss of stability in the energy sys-
tem and energy security, technological dependency, and labour loss. The risks associated with the baseline pathway 
include the loss of international reputation, waste of R&D resources, and dependency on imported coal. Importantly, 
some risks associated with decarbonisation, such as a fall in employment and technological dependency, could be 
mitigated if the government communicates to firms and workers that the scale-down of the coal sector is inexorable 
given the global commitment to combat climate change. However, this will be accompanied by a simultaneous scale-
up of the sector related to carbon-free technologies

In the last section we discussed some of the risks associated with the implementation of the decarbonisation path-
way. We highlighted the risk of a lack of support or opposition towards decarbonisation by three groups of stakehold-
ers: experts, citizens, and political parties. The survey among experts suggests that they support the decarbonisation 
at a pace similar to the one assumed under the decarbonisation pathway in this study. The energy transformation 
may be resisted by local communities if it involves investments that affect landscapes or, more generally, the well-be-
ing of citizens. Finally, political parties may not be interested in raising the topic of climate change, especially if there 
are other important issues on the agenda, such as economic growth or economic inequality. 
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APPENDIX 1. Assumptions on the availability  
of natural gas
We assumed the import of natural gas for the use in the power sector has a cap at the level of 7.4bln m3. This value 
was computed as follows. The total import of natural gas in 2015 was 12.6bln m3. We assumed that the total import 
could increase by no more than 50%. Thus the cap on the total import of natural gas was assumed at the level of 
18.8bln m3. We assumed that the consumption of gas in the other sectors cannot be smaller than the current con-
sumption (11.4bln m3 in 2015). Thus the cap on the import of natural gas for the use in the power sector is at the 
level of 7.4bln m3.

We assume that the domestic resource of natural gas available for the power sector is at the level of 10.9bln m3. This 
value was computed as follows. Currently, the total domestic resource of natural gas is 121 bln m3.10 We assumed 
that the share of this resource available for the power sector is equal to the share of consumption of natural gas in 
the power sector in the total natural gas consumption.

10  Source: http://geoportal.pgi.gov.pl/surowce/energetyczne/gaz_ziemny
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APPENDIX 2. Details of the method of the survey study  
and its limitations

DATE OF THE STUDY

The study was conducted on 7 November 2017 between 11.00 and 13.30.

TOOLS 

A paper version of the questionnaire was distributed among the debate participants. The debate was organised by 
Procesy Inwestycyjne (Ltd) under the title “The Polish Energy Mix”. The participants provided their answers to the ques-
tionnaire during (or shortly before and after) the debate. The questionnaires were collected at the end of the debate. 

SELECTION OF PARTICIPANTS  

The debates conducted by Procesy Inwestycyjne (Ltd) concentrate on topics related to low-carbon economy trans-
formation. This particular debate was held at the Faculty of Civil Engineering at the Warsaw University of Technology 
(address: ul. Armii Ludowej 16, Warsaw).

Since its establishment in 2003, Procesy Inwestycyjne (Ltd) has organised several projects, consultations, and strate-
gic communication campaigns oriented primarily towards the energy, gas, industry, construction, and IT sectors, as 
well as towards local authorities. It collaborates closely with stakeholders from the EU and Polish public administra-
tion, business organisations, and academia. 

STRUCTURE OF THE QUESTIONNAIRE  

Among the seven questions asked, two were designed with the purpose of identifying the participants (the first was 
closed and the second semi-open). The remaining five questions were closed. The fourth and the fifth questions were 
in tabular form.

LIMITATIONS OF THE STUDY

The study was conducted on a specific group that had gathered together to participate in a debate on low-carbon 
transformation in Poland. Even though the participants formed quite a diversified group in terms of their views on the 
topic, taken as a whole they can be perceived as being outside of the political mainstream, which in Poland is overall 
more sceptical towards the EU’s climate and energy policy. To counterbalance this deficiency, the study could be 
conducted in a contrasting forum aimed at preserving the coal-mining sector.

The survey was originally designed for an online survey, which would better facilitate the selection of answers. How-
ever, due to its length and the relatively demanding structure of the questions, the results from the online survey were 
not successful in terms of responsiveness. Therefore, the authors decided to choose an alternative form of distribu-
tion involving personally handing out and collecting the surveys in order to achieve a more representative sample. 
As a result of this change from an online to a paper version, it transpired that question no. 4 was formulated in too 
complicated a manner, which translated into a low rate of correct answers. The same problem applied to question no. 
5 also, albeit to a lesser extent.
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