
The global distribution of routine and non-routine work

Piotr Lewandowski (IBS, IZA)
Wojciech Hardy(IBS)
Albert Park (IEMS HKUST, IZA)
Du Yang (CASS)

The de-routinisation of work in the US and Western Europe can be attributed to the routine-biased technological progress and offshoring

- Routine cognitive and manual tasks are substituted by technology and they decline
- Non-routine cognitive tasks complement technology and they grow
- Non-routine manual tasks are typical for lousy jobs, may grow or decline depending on the general equilibrium effects

Source: Autor, Price (2013)

Task contents are usually calculated with O*NET, a US database on occupational demands (Autor et al. 2003, Acemoglu & Autor 2011)

	Non-routine cognitive (analytical / interpersonal)	Routine cognitive	Routine manual	Non-routine manual
Task items	Abstract thinking, creativity, problem solving /Guiding, directing, motivating, communicating	Repeating the same tasks, being exact or accurate, structured work	Pace determined by equipment, controlling machines and processes, making repetitive motions	Operating vehicles, mechanized devices, manual dexterity, spatial orientation
Relationship b/w human tasks and ICT	Complementary	Easy to automate	Easy to automate	Automation tough or unprofitable
Occupations rich in these tasks	Specialists (e.g designers, engineers, IT developers), technicians, managers	Office clerks, sellers, administrative workers, cashiers	Production workers, e.g. machine operators, assemblers and locksmiths	Drivers, miners, construction workers, waiters and waitresses, porters, cooks

Cross-country studies use O*NET assumming that it is a good proxy for occupational content outside of the US (occupations are identical)

 Handel (2012): high correlations between O*NET measures and results from country-specific skill surveys in some OECD countries

• Goos et al. (2014), Arias et al. (2014), Lewandowski et al. (2018): applications of O*NET to LFS data in the OECD and/or EU countries

• World Development Report 2016: the Autor (2015) typology of high-, middle-, and low-skill occupations in the US assigned to developing countries with bizzare results

But are occupations really identical around the world?

The contribution of this paper

- We construct task content measures which:
 - Are measured at the worker level
 - Are country-specific
 - Are consistent with the Acemoglu & Autor (2011) measures based on O*NET
 - Can be applied to PIAAC and STEP datasets
- We find that the task contents of occupations are different around the world
- These differences can be attributed to differences in technology (ICT, robots), global value chain position and skills

Recent attempts to create routine/non-routine task measures using skill surveys with individual level data on job content

- De la Rica & Gortazar (2016), Marcolin et al. (2016) with PIAAC (OECD and partners)
- Dicarlo (2016) with STEP (10 developing countries)
- These papers are quite arbitrary in how they define tasks.

Recent attempts to create routine/non-routine task measures using skill surveys with individual level data on job content

- De la Rica & Gortazar (2016), Marcolin et al. (2016) with PIAAC (OECD and partners)
- Dicarlo (2016) with STEP (10 developing countries)
- These papers are quite arbitrary in how they define tasks.
- Differences wrt O*NET tasks can result from different definitions (☺)
 or different country-specific work patterns (☺).
- We want to minimise the former and highlight the latter
- We use PIAAC (32 countries), STEP (9 countries) and CULS (China)

We use three surveys which include comparable data on the skill use at work, literacy and labour market status

PIAAC (OECD)

- 32 countries surveyed between 2011 and 2015
- sample sizes: from 4000 (Russia) to 26000 (Canada)

STEP (World Bank)

- 9 countries surveyed between 2011 and 2015
- sample sizes: from 2400 (Ukraine) to 4000 (Macedonia) urban residents
- representative for survey areas
- skill use at work and literacy test comparable to PIAAC

CULS (Chinese Academy of Social Science)

- 6 cities (Guangzhou, Shanghai, Fuzhou, Shenyang, Xian, Wuhan) in 2016
- sample size 15500
- representative for the survey area
- skill use at work questionnaire as in STEP

. .

PIAAC

- Belgium Flanders
- Russia without Moscow municipal area
- UK England and Northern Ireland
- Indonesia Jakarta
- Singapore only permanent residents (approx. 75% of population)

STEP – urban survey with additional limitations in some countries

- Bolivia four main cities La Paz, El Alto, Cochabamba and Santa Cruz de la Sierra (approx. 80% of urban population)
- Colombia 13 main metropolitan areas
- Georgia without Abkhazia and South Ossetia
- Lao PDR both urban and rural, but we drop rural for consistency
- China (CULS) 6 cities

Merge O*NET with the US PIAAC, and calculate the Autor & Acemoglu (2011) task contents

Merge O*NET with the US PIAAC, and calculate the Autor & Acemoglu (2011) task contents

Identify task items included in both PIAAC and STEP, group them into four categories (non-routine cognitive analytical and personal, routine cognitive, manual)

Merge O*NET with the US PIAAC, and calculate the Autor & Acemoglu (2011) task contents

Identify task items included in both PIAAC and STEP, group them into four categories (non-routine cognitive analytical and personal, routine cognitive, manual)

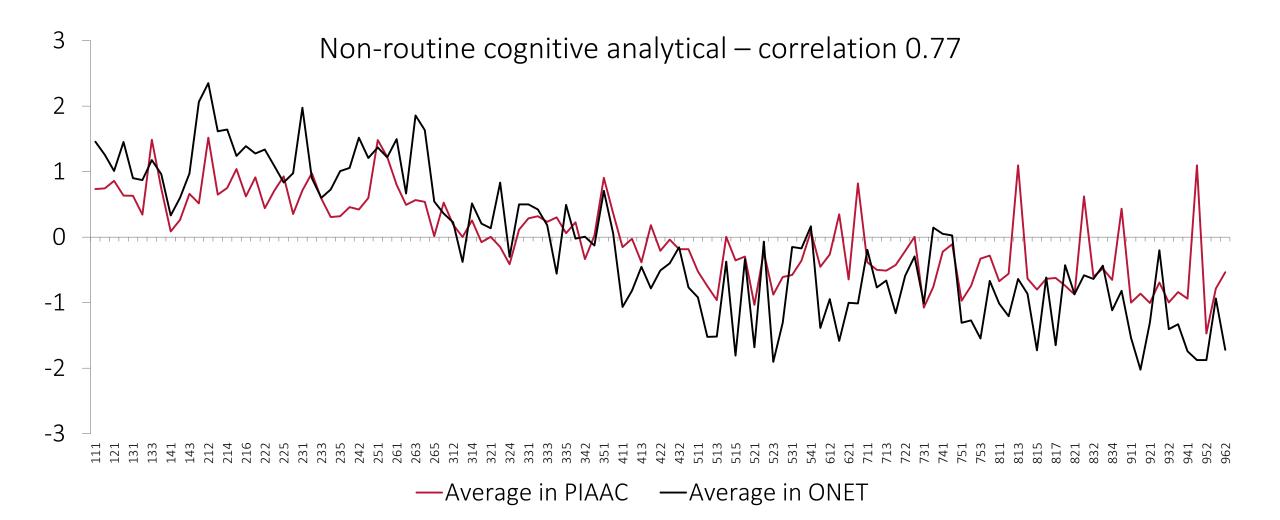
Apply Autor & Acemoglu (2011) method to PIAAC items and find combinations that result in measures which are highly correlated with the O*NET tasks at the occupation level in the US PIAAC

Merge O*NET with the US PIAAC, and calculate the Autor & Acemoglu (2011) task contents

Identify task items included in both PIAAC and STEP, group them into four categories (non-routine cognitive analytical and personal, routine cognitive, manual)

Apply Autor & Acemoglu (2011) method to PIAAC items and find combinations that result in measures which are highly correlated with the O*NET tasks at the occupation level in the US PIAAC

Choose the best combination for every task measure and apply them to all countries (0=US average, 1-US std)


We select the PIAAC / STEP items below and follow Autor & Acemoglu (2011) to calculate the values of tasks in all 42 countries

Task content measure	No. of item / cut-off combinations	Chosen PIAAC / STEP task items	
Non-routine cognitive		Reading news	
	156.250	Reading professional titles	
analytical	156 250	Solving problems	
		Programming	
Non-routine cognitive	2.4	Supervising	
interpersonal	24	Presenting	
Routine cognitive		Changing order of tasks (reversed)	
	5 000	Filling forms	
		Presenting (reversed)	
Manual	1	Physical tasks	

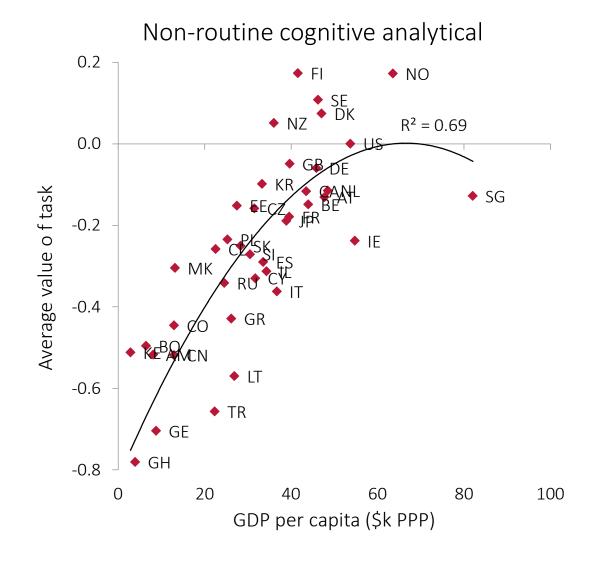
At the 3-digit occupation level in the US, the correlations between our measures and O*NET measures range from 0.55 to 0.77

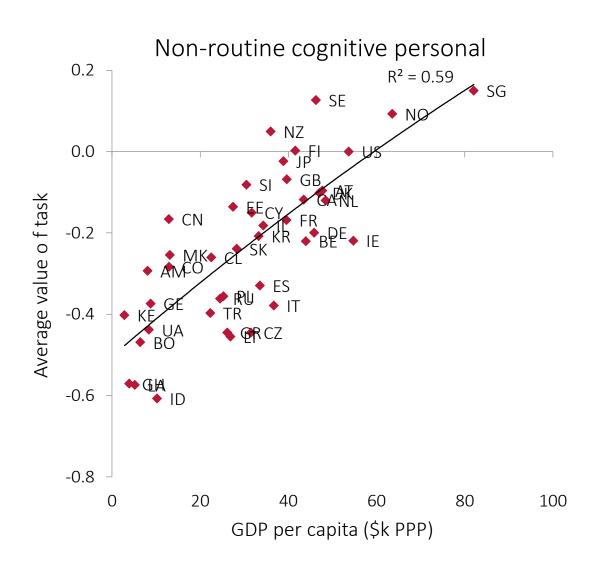
Once we control for GDP and literacy scores, the difference between PIAAC and STEP datasets becomes small and insignificant

	Non-routine cognitive analytical	Non-routine cognitive personal	Routine cognitive	Manual
Base model (I)	-0.22***	-0.03	-0.05	-0.38***
I+ literacy skills (II)	-0.11	-0.04	-0.20	-0.44***
II + GDP	-0.00	0.06	-0.07	-0.18***

The reported coefficients are for a STEP dummy in a whole sample models. The base regressions include dummies for gender, 10-year age groups, education, 1-digit occupations and sectors. The standard errors are clustered at a country level. The regressions with literacy scores exclude China (CULS), Laos and Macedonia due to lack of literacy skills assessment in these countries.

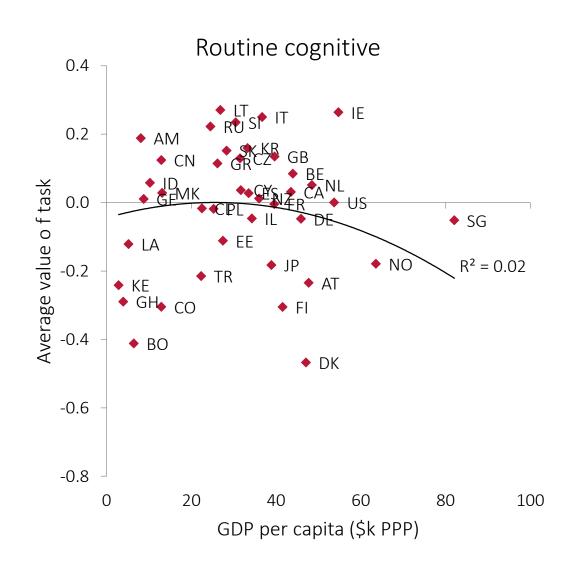
Let's move to the results

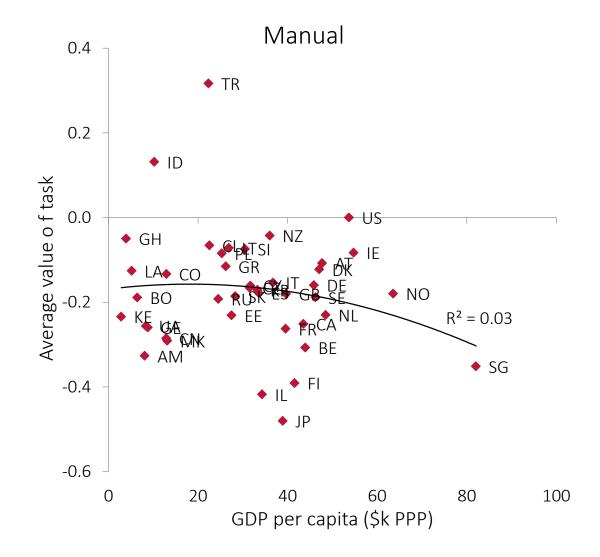



There is no unit of a task so we relate all countries to the US distribution:

- 0 is the average level of a given task in the US
- 1 is equivalent to the standard deviation of a given task in the US

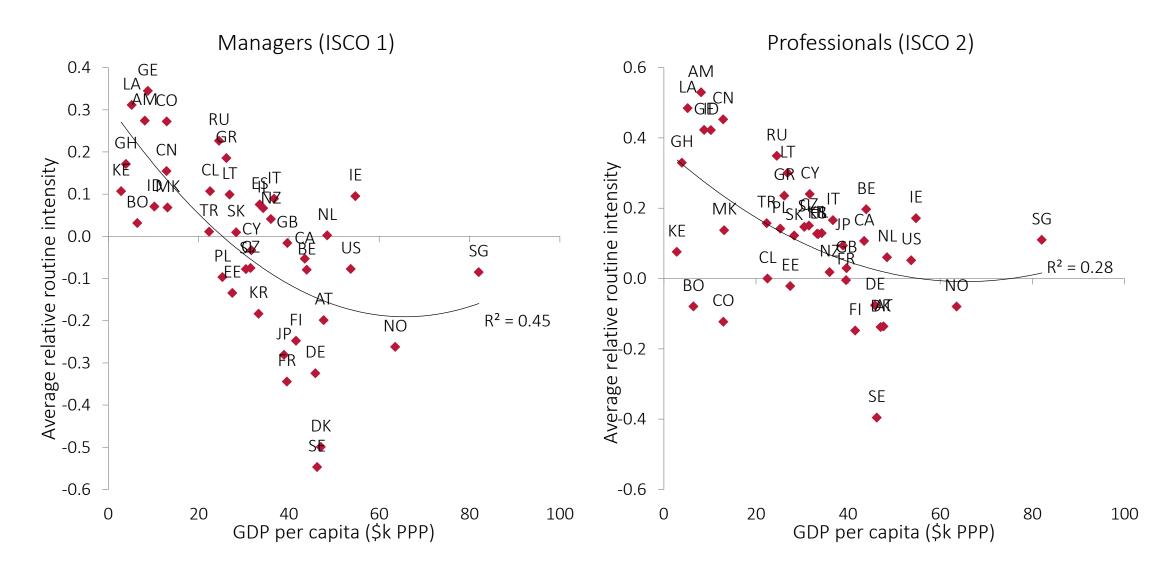
The more developed countries exhibit higher average values of non-routine tasks than the less developed countries





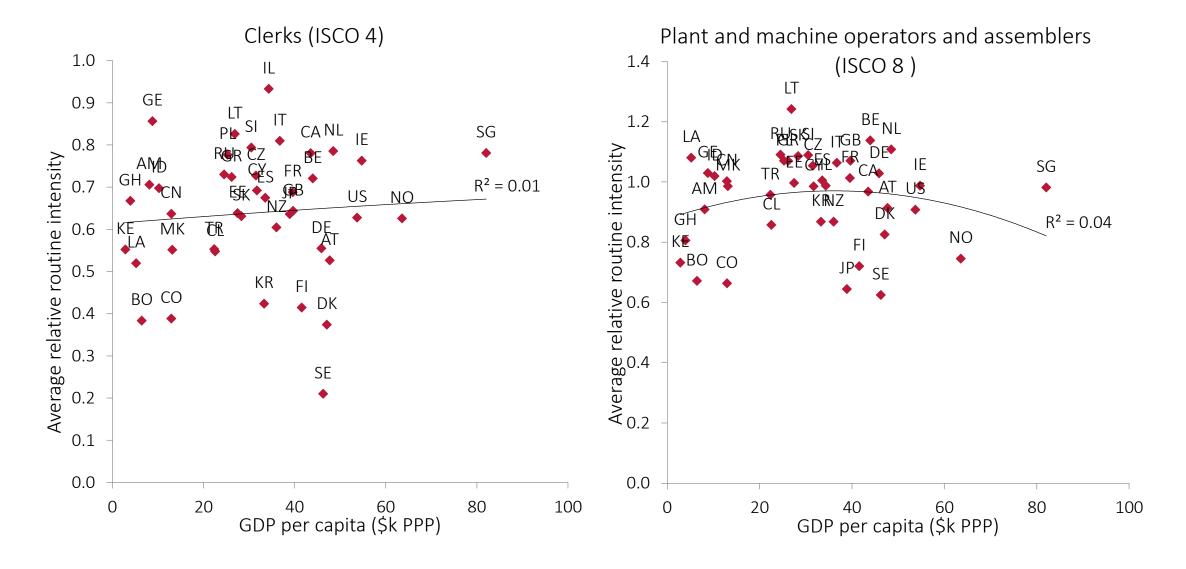
The relationship of routine cognitive and manual tasks with GDP per capita is inverse U-shaped but not significant

Routine task intensity (RTI) increases with the relative importance of routine tasks, decreases with the relative importance of non-routine tasks


$$RTI = \ln(r_{cog}) - \ln\left(\frac{nr_{analytical} + nr_{personal}}{2}\right)$$

RTI allows

- Comparing occupations across countries
- Identifying individual-, sector-, and country-level correlates of routine intensity


We find noticeable differences of the task content of the high-skilled occupations in the less and more developed countries

But cross-country differences in middle- and low-skilled occupations are not systematically related to the development level

We estimate worker-level models of routine task intensity (RTI) accounting for individual and country-sector level factors

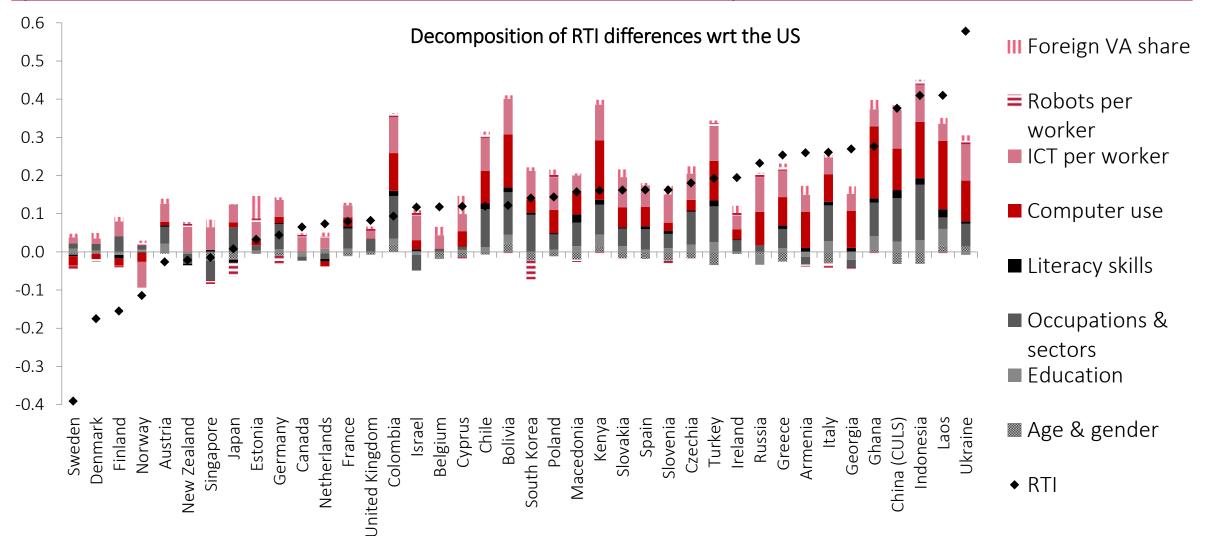
	M1	M2	M3	M4
Primary education	0.20***	0.10***		
Tertiary education	-0.37***	-0.13***		
Literacy skills level: up to 1				
Literacy skills level: 3				
Literacy skills level: 4 and 5				
Computer use (worker)				
ICT stock per worker (country)				
Robots per worker (sector)				
Foreign VA share (sector)				
Occupation and sector controls	No	Yes		
No. of obs. / R^2	157,806 / 0.14	156,151 / 0.29		

Once we control for literacy skills and computer use the difference between primary and secondary educated workers turns insignificant

	M1	M2	M3	M4
Primary education	0.20***	0.10***	0.01	
Tertiary education	-0.37***	-0.13***	-0.08***	
Literacy skills level: up to 1			-0.01	
Literacy skills level: 3			-0.03***	
Literacy skills level: 4 and 5			-0.09***	
Computer use (worker)			-0.31***	
ICT stock per worker (country)				
Robots per worker (sector)				
Foreign VA share (sector)				
Occupation and sector controls	No	Yes	Yes	
No. of obs. / R^2	157,806 / 0.14	156,151 / 0.29	143,970 / 0.33	

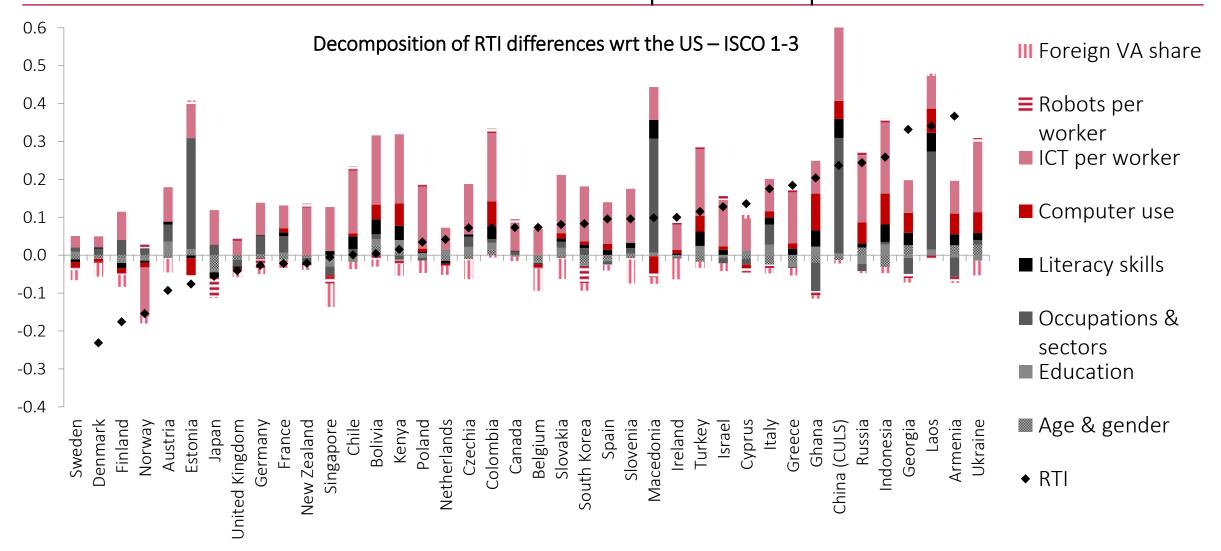
Pooled OLS regressions. All regressions include dummies for gender, 10-year age groups. The standard errors are clustered at a country level.

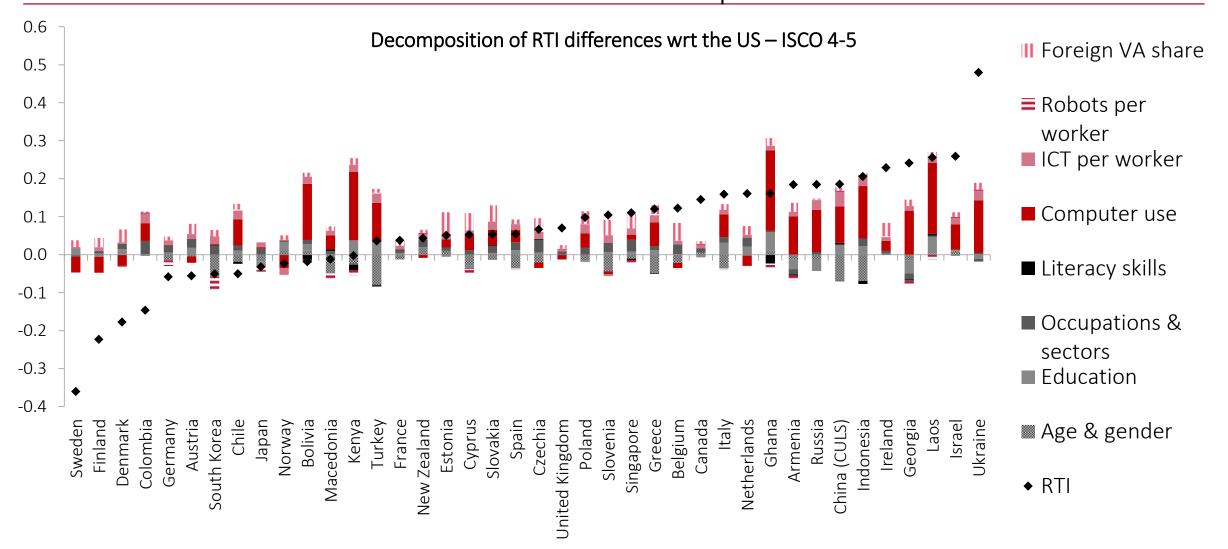
ICT capital stock per worker (country level Eden, Gaggl 2015 data) and robots per worker (by sector, IFR) are negatively related to RTI

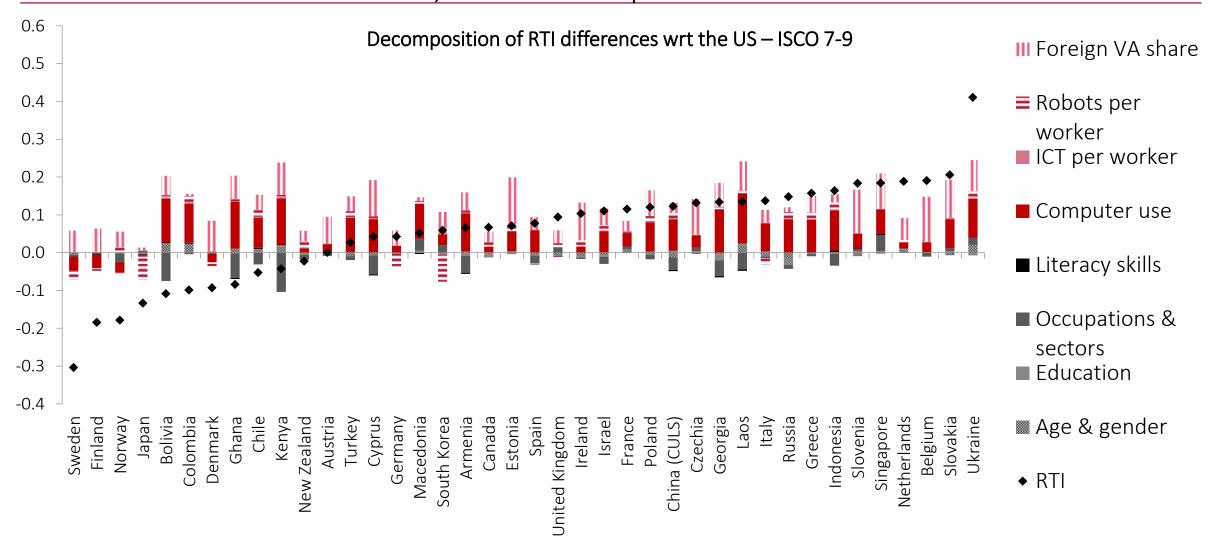


	M1	M2	M3	M4
Primary education	0.20***	0.10***	0.01	0.01
Tertiary education	-0.37***	-0.13***	-0.08***	-0.10***
Literacy skills level: up to 1			-0.01	-0.00
Literacy skills level: 3			-0.03***	-0.02**
Literacy skills level: 4 and 5			-0.09***	-0.08***
Computer use (worker)			-0.31***	-0.29***
ICT stock per worker (country)				-0.04*
Robots per worker (sector)				-0.04***
Foreign VA share (sector)				0.01
Occupation and sector controls	No	Yes	Yes	Yes
No. of obs. / R^2	157,806 / 0.14	156,151 / 0.29	143,970 / 0.33	124,418 / 0.34

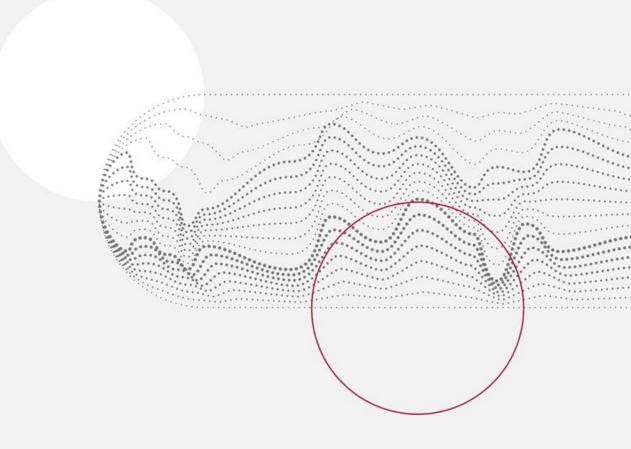
Pooled OLS regressions. All regressions include dummies for gender, 10-year age groups. The standard errors are clustered at a country level.


Differences in occupational structures, computer use and ICT stock per worker contribute the most to cross-country differences in RTI


Among the high-skilled workers, a large chunk of differences can be attributed to the differences in the ICT capital stock per worker


Among the middle-skilled workers, the largest share can be attributed to differences in the individual computer use

Among the low-skilled workers, individual computer use and FVA shares contribute the most, while ICT capital stock doesn't matter


What tasks tell us about the global division of work

- We create task content measures which:
 - are worker-based and country-specific
 - but correspond with the established O*NET task content measures
- Occupations are indeed different around the world
 - Non-routine work is more common in the most advanced countries, especially among high-skilled
 - Routine cognitive work has an inverse-U shape relationship with GDP per capita
- Cross-country differences in routine intensity of jobs can be atrributed to:
 - Partly to differences in education, skills and employment structures
 - Notably to differences in computer use and ICT capital stock

Thanks for listening

Piotr Lewandowski
piotr.lewandowski@ibs.org.pl
www.ibs.org.pl
@ibs_warsaw

