

DELEGATION AS A SIGNAL

IMPLICIT COMMUNICATION WITH COOPERATION

Joanna Franaszek
European University Institute
Institute for Structural Research

Communication, common as it is, is **imperfect**, both due to strategic incentives and language constraints.

- strategic frictions: lying, babbling, hiding information etc.
- language frictions: (lack of) common language, vague vocabulary, language complexity, limited attention, tacit knowledge etc.

Question

How do language frictions influence strategic behavior?

"Indecisiveness"

Photo by UW Health @Flickr, speech bubbles added with phrase.it

"Indecisiveness"

Photo by UW Health @Flickr, speech bubbles added with phrase.it

"Indecisiveness"

Photo by UW Health @Flickr, speech bubbles added with phrase.it

Non-technical summary

Doctor and patient communicate to reach a decision:

- no divergence of preferences
- two-sided private information
 - doctor observes health
 - patient observes his type (=preference parameter)
- binary action space (=two treatment options)
- patient may get some info about health (at a small cost)
 - signal is binary
 - neither the decision nor the signal are observable by the doctor
 - possibly: doctor's explains the state, patient takes (mental) effort in understanding it
- patient chooses treatment himself or delegates to doctor

Main result

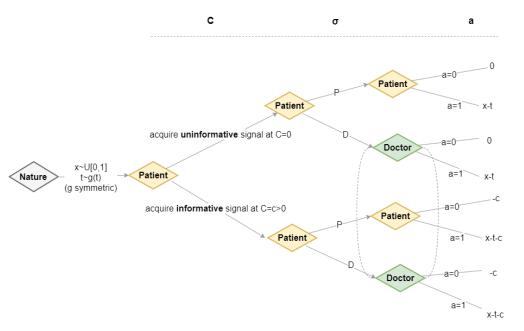
Doctor (upon delegation) correctly recovers the patient's type and adjusts the treatment to the patient's needs.

Principal (patient)-agent (doctor) model with communication:

- utility is u(t, x, a) = a(x t) where x is health, $a \in \{0, 1\}$ is action, $t \in [0, 1]$ is patient's type;
 - $x \sim U[0,1]$ is observed by the doctor
 - $t \sim g(t)$ is observed by the patient (g symmetric and full support)
 - both x and t hard to communicate!
- patient may acquire private costly signal about x
 - signal is binary, with P(s = 1|x) being S-shaped
 - cost of signal is c with $c \in (0, \phi)$
- patient either chooses treatment or delegates to doctor

Main result

Signaling through delegation


Doctor's action choice is non-monotone in health

Friction 1: *t* is patient's **tacit knowledge** and **cannot** be expressed in language. Friction 2: information about *x* **can** be acquired, but is **imperfect and costly**.

- translating medical knowledge to everyday language is hard
- time/mental cost (effort)
- signal s about x is binary

For now... think about the signal
$$s = \begin{cases} 1 \text{ for } x > \frac{1}{2} \\ 0 \text{ for } x < \frac{1}{2} \end{cases}$$

If you're impatient... think about general class of continuous, symmetric signals with $p(x) = \mathbb{P}(s=1|x)$ being S-shaped

Simple signal structure: s = 1 for x > 1/2 and s = 0 otherwise.

Assume g(t) = U[0, 1] and $c < \frac{1}{36}$.

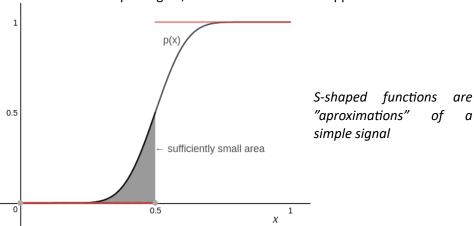
In the (unique!) equlibrium:

- patient
 - invests in a signal whenever $t \in \left[\frac{1}{4}, \frac{3}{4}\right]$.
 - for $t \in \left(\frac{5}{12}, \frac{7}{12}\right)$ retains the authority,
 - for $t \in \begin{bmatrix} \frac{1}{4}, \frac{5}{12} \end{bmatrix}$ delegates for s = 0
 - for $t \in \begin{bmatrix} \frac{7}{12}, \frac{3}{4} \end{bmatrix}$ delegates for s = 1
- doctor
 - chooses a=1 (upon hearing delegation) if and only if $\mathbf{x} \in \left[\frac{1}{3},\frac{1}{2}\right] \cup \left[\frac{2}{3},1\right]$,
 - thus, his recommendation is non-monotone in health

Limit case explained

ı :

Take doctor's choice as given:


- every patient apart from extreme gets cheap information
- median types follow the signal
- at least some types prefer to delegate
- for doctor's profile as above, the delegating types are $t \in \left[\frac{1}{4}, \frac{5}{12}\right] \cup \left[\frac{7}{12}, \frac{3}{4}\right]$.

Take patient's choice as given.

- ullet upon delegation, the doctor anticipates $t \in \left[rac{1}{4}, rac{5}{12}
 ight] \cup \left[rac{7}{12}, rac{3}{4}
 ight]$
- but he also know x! Suppose x > 1/2
- the signal must have been s = 1
- ullet the delegation *must have come from* $t \in \left[rac{7}{12}, rac{3}{4}
 ight]$
- on average E(t|delegation, x) = 2/3
- if x < 2/3, doctor recommends a = 0; otherwise a = 1

Result in a nutshell

If the signal is S-shaped and "sufficiently informative", the doctor's actions choice is non-monotone in health.

Patient's choice

Delegation & investment when information is very cheap ($c<\psi$)										
no info retain		info cond. del.		info retain			info cond. del.		no info retain	
0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
									t	
and a bit more expensive ($\psi < c < \phi$)										
no info		info		no info			info		no info	
retain		cond. del.		delegate			cond. del.		retain	
				1						
0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1

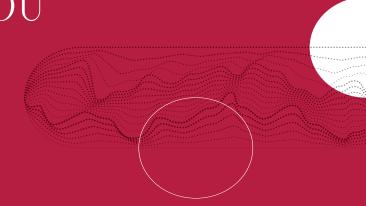
Doctor's choice

- Doctor, upon delegation
 - \bullet anticipates what values of (s, t) led to delegation
 - knows x ⇒ knows "most likely" s
 - separates types who delegate for s = 1 from those who delegate for s = 0
 - knows "most likely" range of t
 - adjusts his action by choosing a = 1 if x E(t|D, x) > 0
 - choice (sometimes) is non-monotone in x!

Action profile if p(x) is steep enough (left) and otherwise (right).

Model of costly communication vs. delegation with **no conflict of interest** and severe language frictions.

- tacit knowledge
- imperfect technology of acquiring information


Result: There exists an equilibrium with "cues", in which:

- doctor uses observed delegation and knowledge about x to correctly guess the range of t
- thus, delegation becomes an imperfect signal about the nonverbalizable type
- (for some family of signals) the action profile becomes non-monotone in state of the world

THANK YOU

WWW.IBS.ORG.PL

