

Technology, Skills, and Globalization: Explaining International Differences in Routine and Non-Routine Work Using Survey Data

Piotr Lewandowski (IBS, IZA) Albert Park (IEMS HKUST, IZA) Wojciech Hardy(IBS) Du Yang (CASS)

Motivation: the shift away from routine tasks and towards non-routine tasks is a secular change on developed countries' labor markets

Worker Tasks in the EU28, 1998-2014 Worker Tasks in the U.S. Economy, 1960 – 2009: 20 Mean Task Input in Percentiles of 1960 Distribution 30 40 50 60 70 All Education Groups 15 10 5 0 -5 -10 -15 -20 2006 1998 1999 2000 2014 2001 2002 2003 2004 2005 2008 2009 2010 2013 2007 2011 2012 2010 1980 2000 1960 1970 1990 Non-Routine Interpersonal Non-Routine Analytical Non-Routine Analytical → Non-Routine Interpersonal Non-Routine Manual Routine Cognitive ----Routine Cognitive -----Non-Routine Manual Routine Manual –Routine Manual

Source: Autor, Price (2013)

Source: own calculations

Four key factors explain differences in tasks over time and across countries

- **Technological progress** (computers, ICT, robots, etc.) Autor, Levy, Murnane 2003, Spitz-Oener 2006, Autor & Dorn 2013, Michaels et al. 2013
- Globalization (FDI, trade, and global value chains)
 Oldenski, 2012, Goos et al. 2014, Reijnders & de Vries 2018
- Structural change (sectoral composition)
 Bárány & Siegel, 2018; Du & Park, 2017, Hardy et al. 2018
- **Supply of skills** (worker human capital, demographics) Salvatori, 2015; Hardy et al., 2018, Montresor, 2018

Task contents are usually measured with O*NET, the US database on occupational demands (Autor et al. 2003, Acemoglu & Autor 2011)

. . :

	Non-routine cognitive (analytical / interpersonal)	Routine cognitive	Routine manual	Non-routine manual	
Task items	Abstract thinking, creativity, problem solving /Guiding, directing, motivating, communicating	Repeating the same tasks, being exact or accurate, structured work	Pace determined by equipment, controlling machines and processes, making repetitive motions	Operating vehicles, mechanized devices, manual dexterity, spatial orientation	
Relationship b/w human tasks and ICT	Complementary	Easy to automate	Easy to automate	Automation tough or unprofitable	
Occupations rich in these tasks	Specialists (e.g designers, engineers, IT developers), technicians, managers	Office clerks, sellers, administrative workers, cashiers	Production workers, e.g. machine operators, assemblers and locksmiths	Drivers, miners, construction workers, waiters and waitresses, porters, cooks	

- Data: most countries lack information on worker tasks
 - Focus on occupational structure assuming the US occupation-specific tasks
- Data: tasks are measured at the level of occupation with O*NET, the US database
 - Tasks in the same occupation may differ depending on workers' skills, tenure, etc.
- Coverage: most research focused on the US and Western Europe
 - Story may be different in the middle-income and developing countries

The contribution of this paper

- We construct task content measures which:
 - Are measured at the worker level and country-specific
 - Are consistent with the Acemoglu & Autor (2011) measures based on O*NET
- Data from worker surveys in 42 countries, including high, middle, and low-income
 - Previous studies using survey data examine only richer or poorer countries, and define tasks in an ad-hoc fashion (De la Rica & Gortazar 2016, Marcolin et al. 2016, Dicarlo 2016)
- We examine the contributions of technology, globalization, structural change, and skill supply to task differences across countries

- The task contents of occupations are different around the world
- The routine intensity of tasks is higher in less developed countries, also within particular occupations.
- Cross-country differences in tasks can be attributed to differences in:
 - Technology in 25%, even more for high-skilled occupations;
 - Globalization in 20%, even more for low-skilled and offshorable occupations;
 - Supply of skills in 20%.

We use three surveys which include comparable data on the skill use at work, literacy and labor market status

PIAAC (OECD)	 32 countries surveyed between 2011 and 2015 sample sizes: from 4000 (Russia) to 26000 (Canada)
STEP (World Bank)	 9 countries surveyed between 2011 and 2015 sample sizes: from 2400 (Ukraine) to 4000 (Macedonia) urban residents representative for the survey areas
CULS (Chinese Academy of Social Science)	 6 cities (Guangzhou, Shanghai, Fuzhou, Shenyang, Xian, Wuhan) in 2016 sample size 15500 representative for the survey area

Representativeness of the data is limited in some countries. Bear that in mind when looking at the results

PIAAC

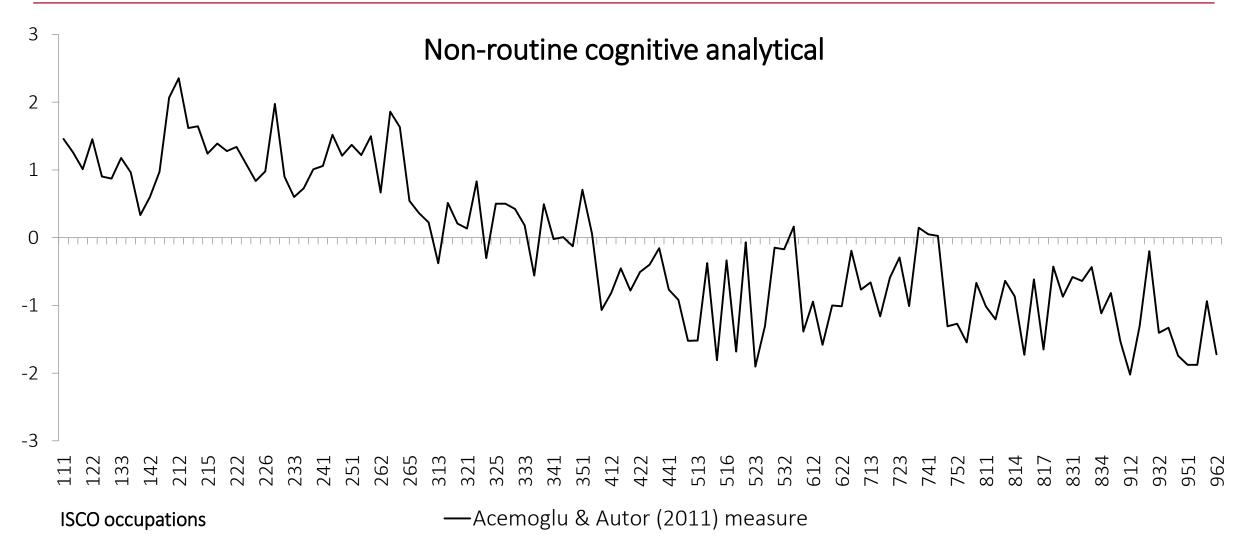
- Belgium Flanders
- Russia without Moscow municipal area
- UK England and Northern Ireland
- Indonesia Jakarta
- Singapore only permanent residents (approx. 75% of population)

STEP – urban survey with additional limitations in some countries

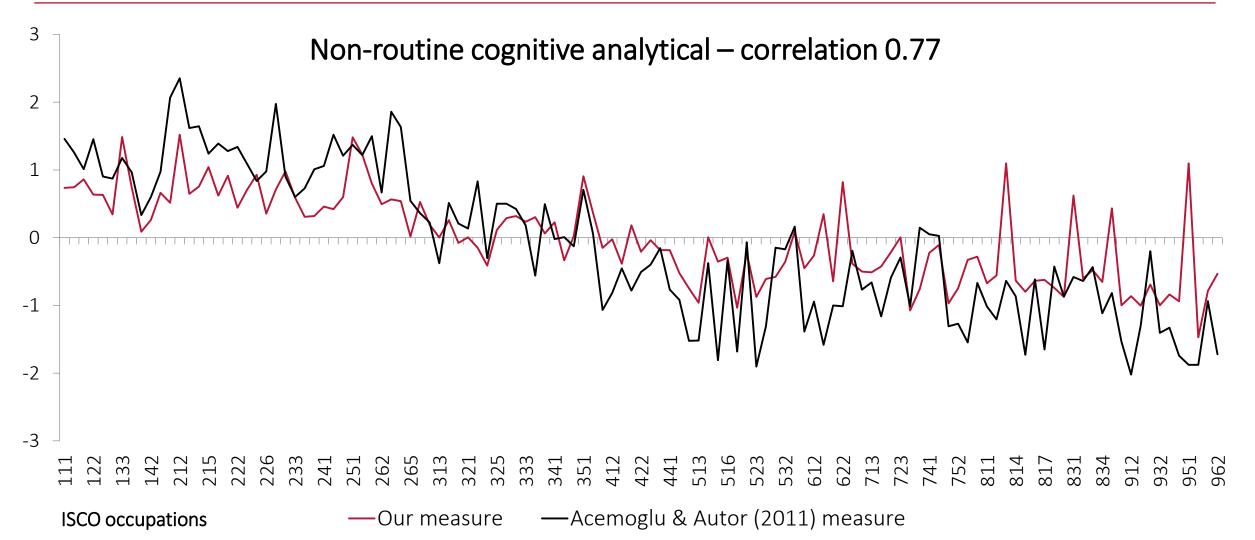
- Bolivia four main cities La Paz, El Alto, Cochabamba and Santa Cruz de la Sierra (approx. 80% of urban population)
- Colombia 13 main metropolitan areas
- Georgia no Abkhazia, South Ossetia
- Lao PDR both urban and rural, but we drop rural for consistency
- China (CULS) 6 cities

. . .

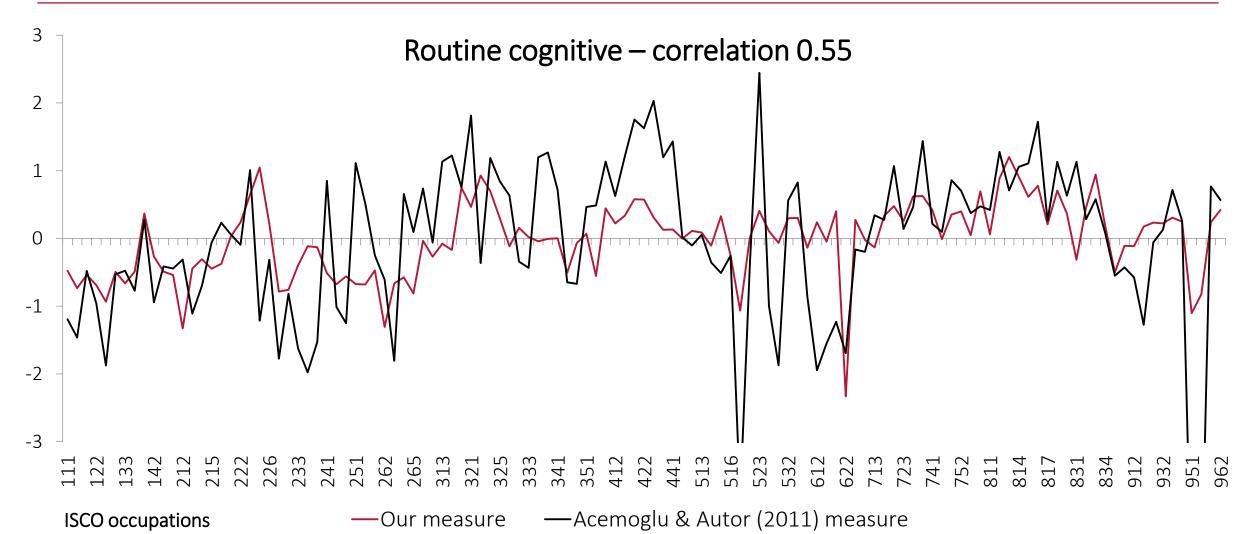
Merge O*NET with the US PIAAC and calculate the Autor & Acemoglu (2011) task measures: non-routine cognitive analytical and personal, routine cognitive, manual


Find combinations of PIAAC questions that approximate best the Autor & Acemoglu (2011) task measures across occupations in the US

We define task contents with these PIAAC / STEP items


	Non-routine cognitive analytical	Non-routine cognitive personal	Routine cognitive	Manual
	Reading news (at least once a month)	Supervising Presenting	Changing order of tasks – reversed (not able)	Physical tasks
Task items	Reading professional titles (at least once a month)	(any frequence)	Filling forms (at least once a month)	
	Solving problems Programming (any frequence)		Presenting – reversed (never)	
Correlation with O*NET tasks	0.77	0.72	0.55	0.74

. . .

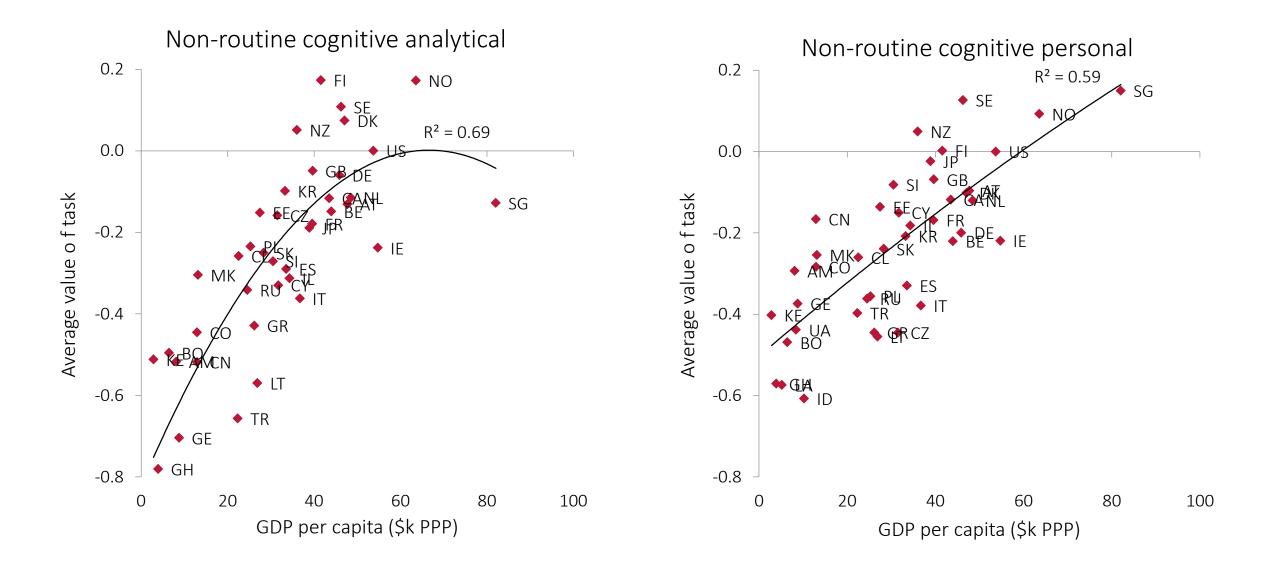

Example: the established Autor & Acemoglu (2011) measure contents calculated with O*NET data for the US

At the 3-digit occupation level in the US, the correlations between our measures and O*NET measures range from 0.55 to 0.77

At the 3-digit occupation level in the US, the correlations between our measures and O*NET measures range from 0.55 to 0.77

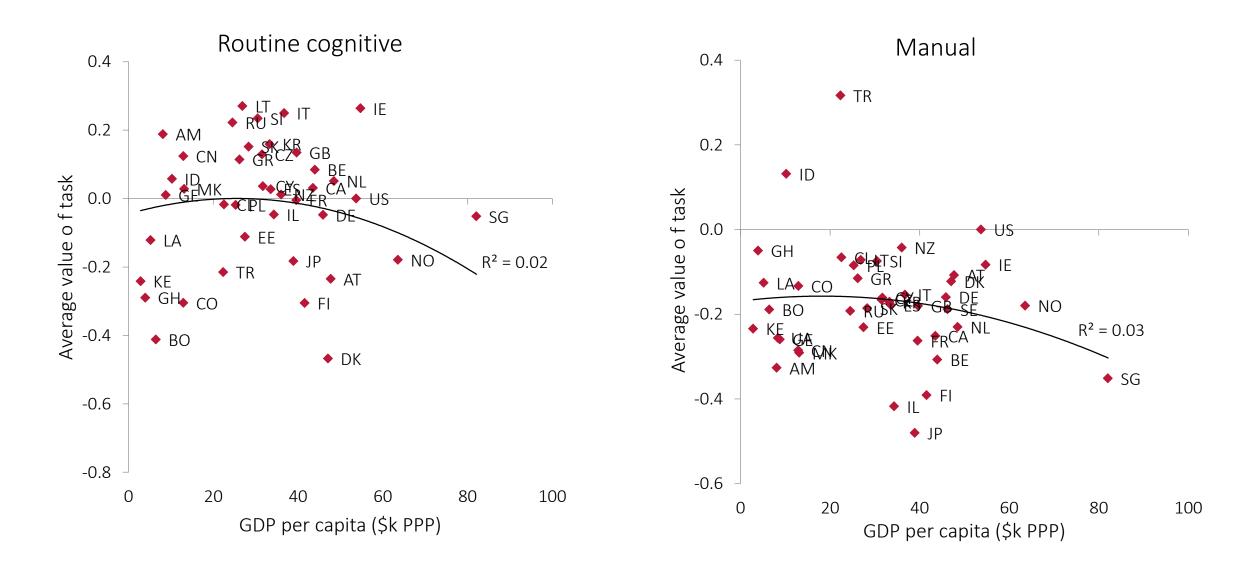
. . .

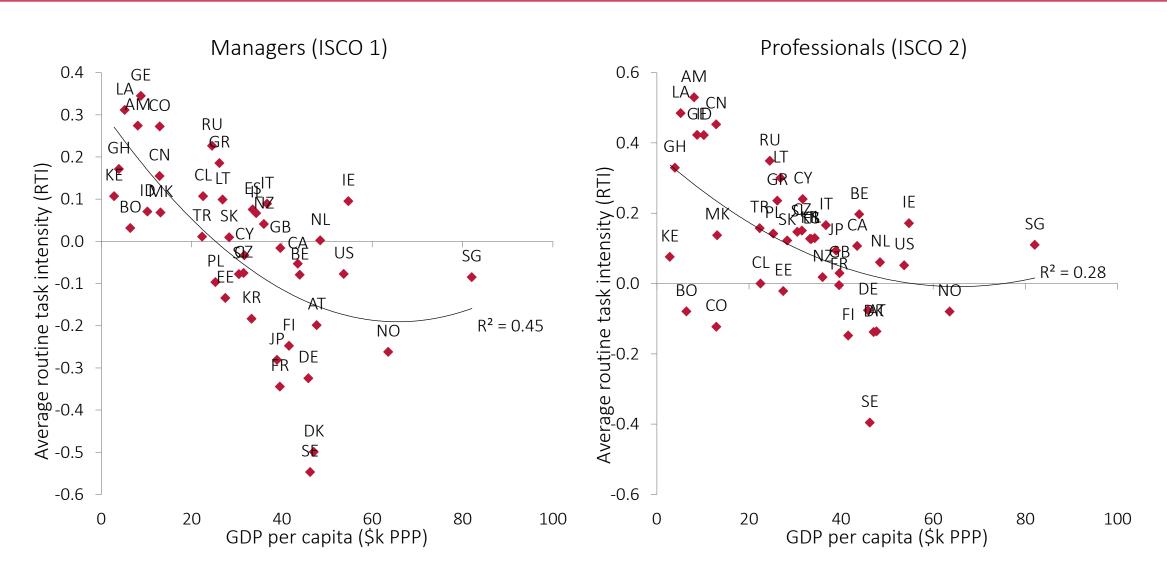
There is no unit of a task – we relate all countries to the US distribution:


- 0 is the average level of a given task in the US
- 1 is equivalent to the standard deviation of a given task in the US

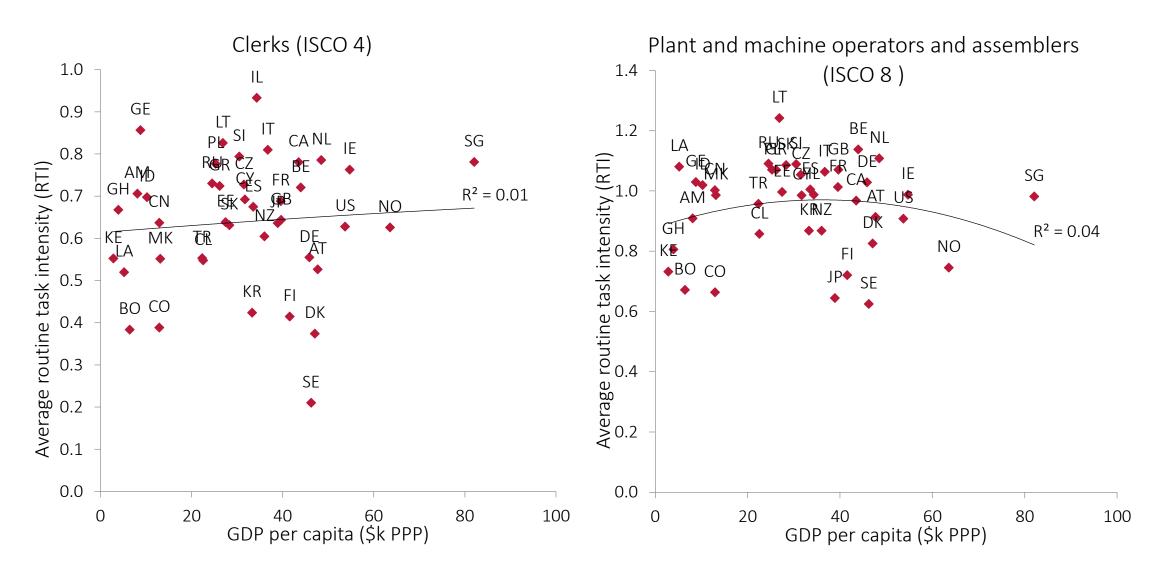
We also define routine task intensity (RTI) $RTI = \ln(r_{cog}) - \ln\left(\frac{nr_{analytical} + nr_{personal}}{2}\right)$

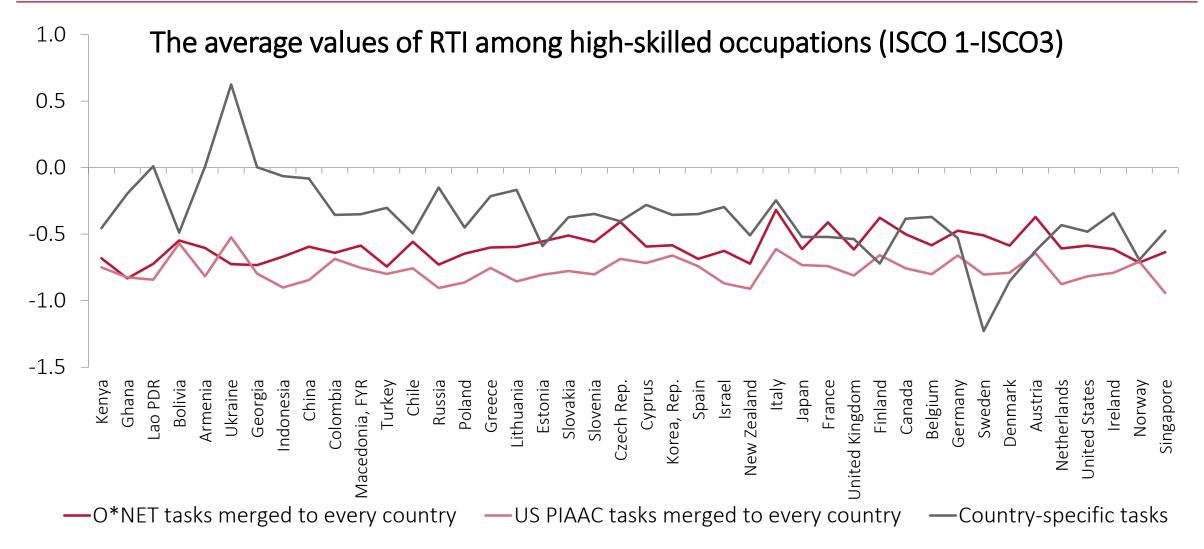
- RTI increases with the relative importance of routine tasks,
- RTI decreases with the relative importance of non-routine tasks.


The more developed countries exhibit higher average values of non-routine tasks than the less developed countries



The relationship of routine cognitive and manual tasks with GDP per capita is inverse U-shaped but not significant




The differences in the routine task intensity are most strongly related to development level among workers in the high-skilled occupations

Cross-country differences in RTI of middle- and low-skilled occupations are not systematicaly related to the development level

Cross-country differences in particular occupations are visible only with the country-specific measurement

- Tasks are endogenously assigned by employers
- Simple Roy model shows that:
 - higher demand for non-routine work
 - lower supply of educated workers

will lead to the most educated workers specialising in non-routine tasks.

- Routine tasks are easier to offshore
 - workers in the countries which receive the offshored jobs may perform more routine tasks

$$RTI_{ijsc} = \beta_0 + \beta_1 Z_{ijsc} + \beta_2 G_{sc} + \lambda_s + \beta_3 E_{ijsc} + \varepsilon_{ijsc}$$

 RTI_{ijsc} - routine task intensity of individual *i* in occupation *j* in sector *s* in country *c*.

- Z_{ijsc} technology used by individual *i* in occupation *j* in sector *s* in country *c*,
- G_{sc} globalization in sector s in country c,
- λ_s sector fixed effects,
- E_{ijsc} skills and demographic characteristics of workers.

Regressions for all workers and for workers in high (ISCO 1-3), middle (ISCO 4-5) and low-skilled (ISCO 7-9) occupations

We measure the four fundamental factors with worker, sector-country and country variables

- <u>Technology</u>: sector-country share of computer use at work, *sector-country robot stock (per worker), *ICT capital stock per worker
- <u>Globalization</u>: foreign value added share in domestic output (FVA share, Wang et al. 2017) also interacted with GDP, FDI stock/GDP
- <u>Structural change</u>: 19 sectors, GDP per capita (log), interactions between them
- <u>Skill supply</u>: education, literacy skills, sex, age group
 - * available for 31 countries only

Decomposition: What explains cross-country differences in routine task intensity?

We use

- the estimated regression coefficients
- country means of explanatory factors

To decompose:

- the variance of RTI using the covariance-based decomposition (Morduch & Sicular, 2002) $\sigma_k = \frac{cov(\beta_k \overline{X}_c^k, \overline{RTI}_c)}{var(\overline{RTI}_c)}$
- the difference in average RTI between each country and the US

$$\overline{RTI_{j}} - \overline{RTI_{US}} = \beta_{1} \left(\overline{Z_{ijsc}} - \overline{Z_{ijsUS}} \right) + \beta_{2} \left(\overline{G_{sc}} - \overline{G_{sU}} \right) + \lambda \left(\overline{S_{c}} - \overline{S_{US}} \right) + \beta_{4} \left(\overline{E_{ijsc}} - \overline{E_{ijsUS}} \right)$$

Higher probablity of computer use is related to less routine tasks. Robots & ICT are insignificant if we control for computer use probability

	All workers	High-skilled occ. (ISCO 1-3)	Middle-skilled occ. (ISCO 4-5)	Low-skilled occ. (ISCO 7-9)	
Computer use	-0.501**	-0.690***	-0.353	-0.240	-

No. of obs. / R^2 148,569 / 0.22	62,907/0.13	47,373 / 0.09	38,289 / 0.08
----------------------------------	-------------	---------------	---------------

Globalization – specialization in global value chains – has the strongest effect among workers in low-skilled occupations

	All workers	High-skilled occ. (ISCO 1-3)	Middle-skilled occ. (ISCO 4-5)	Low-skilled occ. (ISCO 7-9)
Computer use	-0.501**	-0.690***	-0.353	-0.240
FVA share	0.266*	-0.057	-0.057 0.189 0	
FVA* GDP pc (log, demeaned)	-0.424**	4** -0.216 -0.239	-0.239	-0.347
FDI / GDP	0.009*	.009* 0.023*** 0.010	-0.016***	
GDP per capita (log, demeaned)	0.057	-0.038	0.013	0.052
No. of obs. / R^2	148,569 / 0.22	62,907 / 0.13	47,373 / 0.09	38,289 / 0.08

Higher skills are associated with less routine tasks,	
especially among workers in high-skilled occupations.	• • •

		All workers	High-skilled occ. (ISCO 1-3)	Middle-skilled occ. (ISCO 4-5)	Low-skilled occ. (ISCO 7-9)
Secondary	Primary education 0.246***		0.135***	0.223***	0.135***
Ref. Se	Tertiary education	-0.486***	-0.267***	-0.198***	-0.142***
Ref. Lower medium	Low literacy skills	0.077***	0.032	0.051**	0.057**
	Upper Medium Literacy skills	-0.138***	-0.086***	-0.062***	-0.048**
	High literacy skills	-0.293***	-0.190***	-0.064**	-0.174***
	No. of obs. / R^2	148,569 / 0.22	62,907 / 0.13	47,373 / 0.09	38,289 / 0.08

Female and younger workers perform more routine intensive tasks

		All workers	High-skilled occ. (ISCO 1-3)	Middle-skilled occ. (ISCO 4-5)	Low-skilled occ. (ISCO 7-9)
Female		0.249***	0.239***	.39*** 0.203***	
Ref. 25-44	Age 16-24	0.227***	0.220***	0.207***	0.147***
	Age 35-44	-0.054***	-0.062***	-0.020	-0.038*
	Age 45-54	-0.012	-0.062***	0.017	0.043*
	Age 55-64	0.020	-0.052***	0.110***	0.078***
	No. of obs. / R^2	148,569 / 0.22	62,907 / 0.13	47,373 / 0.09	38,289 / 0.08

Overall, most of the cross-country differences in routine task intensity can be attributed to technology, globalization and skills

Decomposition of cross-country variance of RTI by fundamental factors, (% of total variance)

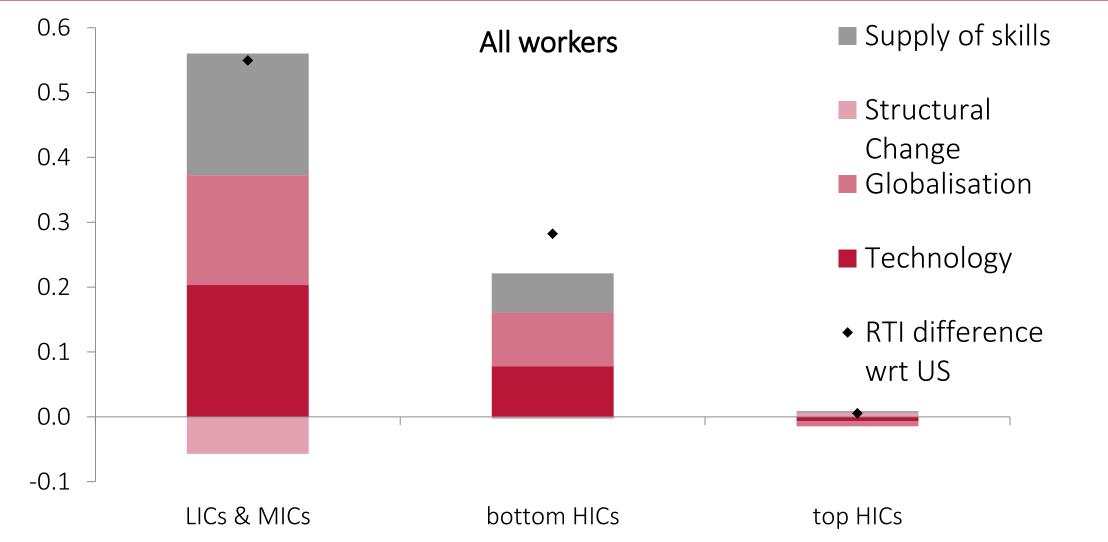
	Technology	Globalization	Structural Change	Supply of skills	Total
All workers	23.4	20.5	-5.4	18.2	56.7

Technology contributes the most for high- and middle-skilled occupations, globalization for the low-skilled occupations

Decomposition of cross-country variance of RTI by fundamental factors, (% of total variance)

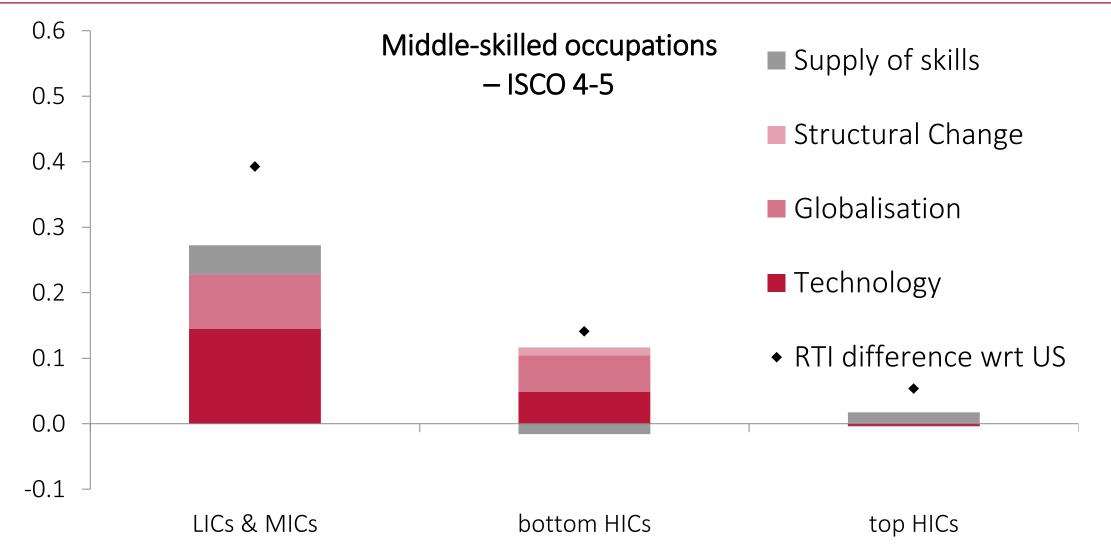
	Technology	Globalization	Structural Change	Supply of skills	Total
All workers	23.4	20.5	-5.4	18.2	56.7
High-skilled occupations (ISCO 1-3)	25.6	9.9	10.4	6.9	52.8
Middle-skilled occupations (ISCO 4-5)	13.5	8.2	0.9	2.5	25.1
Low-skilled occupations (ISCO 7-9)	6.2	21.2	-5.3	1.1	23.3

We group countries to three classes and take averages of decomposition results for each class

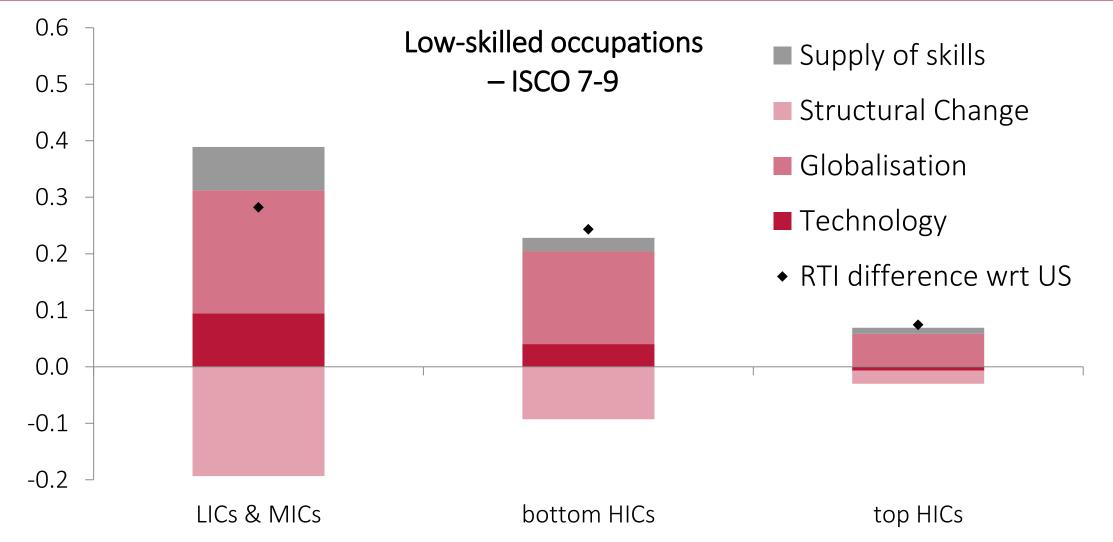

Low and Middle Income Countries	Bottom High Income	Top High Income Countries	
	Countries		
		France	
		Israel	
Kenya	Chile	Japan	
Ghana	Poland	New Zealand	
Lao, PDR	Lithuania	United Kingdom	
Ukraine	Slovakia	Belgium	
Bolivia	Cyprus	Germany	
Indonesia	Estonia	Canada	
China	Greece	Finland	
Armenia	Czech Rep.	Austria	
Georgia	Slovenia	Netherlands	
Colombia	Spain	Sweden	
Russia	Korea, Rep.	Denmark	
Turkey	Italy	Singapore	
		Ireland	

Norway

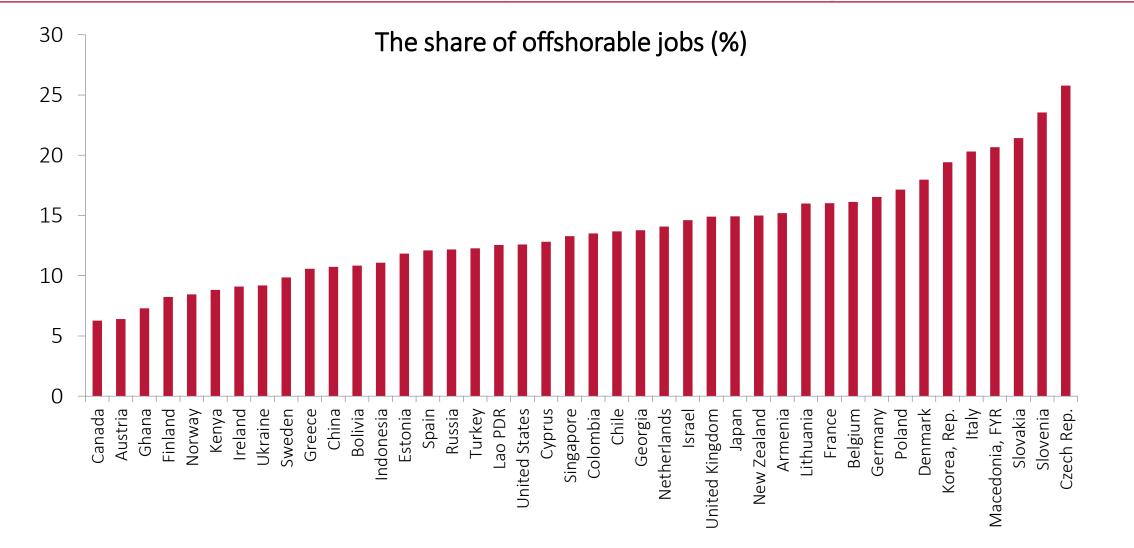
Average levels of RTI and explanatory variables by country groups


	LIHCs and MIHCs	Bottom HICs	Top HICs	US
RTI	0.54	0.28	0.01	0.00
Computer use	0.35	0.60	0.76	0.75
GDP per capita (log, demeaned)	-1.48	0.12	1.02	1.23
FDI stock/GDP	0.42	1.24	0.79	0.35
FVA Share	0.15	0.24	0.19	0.08
Education: primary	0.32	0.17	0.15	0.10
Education: tertiary	0.34	0.34	0.42	0.42
Literacy skills level: 1 or lower	0.45	0.18	0.13	0.14
Literacy skills level: 3	0.17	0.36	0.41	0.40
Literacy skills level: 4 and 5	0.02	0.08	0.15	0.15

Overall, lower supply of skills matters the most in LIHc and MIHc. In bottom HICs globalization and technology are dominant

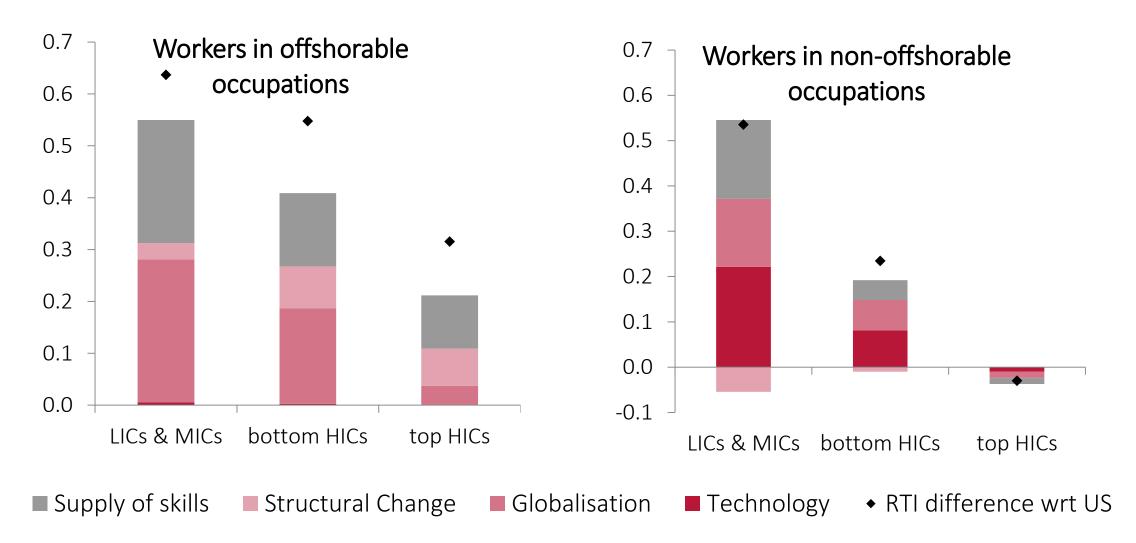


For the high-skilled occupations, technology matters the most, while skills contribute only in LICs & MICs 0.6 **High-skilled** occupations Supply of skills - ISCO 1-3 0.5 Structural Change 0.4 Globalisation 0.3 Technology 0.2 RTI difference wrt US 0.1 0.0 -0.1 LICs & MICs bottom HICs top HICs


In middle-skill occupations, technology and globalization contribute the most

The contribution of globalization is the most pronounced for low-skilled occupations in all groups of countries

Next we study if the determinants of task differences are different for offshorable and non-offshorable occupations (Blinder & Krueger, 2013)



Technology matters for non-offshorable jobs.		•
Globalization matters for offshorable jobs.	٠	•

The effects of technology and globalization on RTI in offshorable and non-offshorable occupations

	All workers	Workers in non-offshorable	Workers in offshorable	
	All WOLKETS	occupations	occupations	
Computer use	-0.508**	-0.555***	-0.012	
FVA share	0.269*	0.171	0.762***	
GDP per capita	0.060	0.062	0.015	
(log, demeaned)	0.000	0.002		
FVA share *	-0.424**	-0.396**	-0.530*	
GDP per capita (log, demeaned)	-0.424	-0.590		
FDI / GDP	0.009*	0.012**	-0.006	
Skills and demographic	Voc	Voc	Yes	
characteristics	Yes	Yes		
Sector fixed effects	Yes	Yes	Yes	
No. of observations	148,120	129,965	18,155	
R-Squared	0.220	0.222	0.245	

Technology explains most of task differences among workers in non-offshorable occupations, but doesn't matter for offshorable occupations – globalization does

Finally, we assess the role of occupations

We re-estimate our model controlling for occupations

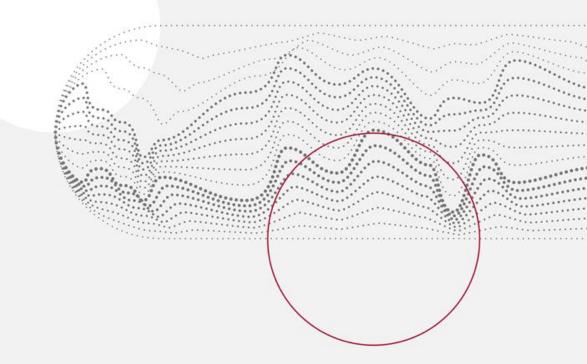
$$RTI_{ijsc} = \beta_0 + \beta_1 Z_{ijsc} + \beta_2 G_{sc} + \lambda_s + \beta_3 E_{ijsc} + \boldsymbol{\tau_o} + \varepsilon_{ijsc}$$

 τ_o - occupational dummies (1-digit ISCO groups).

Occupations capture some of the differences otherwise attributed to fundamental factors, but technology still explains the most

Decomposition of cross-country variance of RTI, controlling for occupations (% of total variance)

	Technology	Globalization	Structural Change	Supply of skills	Occupations	Total	
Model w/ no occupations	23	21	-5	18	-	57	
Model w/ occupations	19	16	-3	8	17	57	


 Task differences across countries cannot be explained by differences in occupational structures

What survey data tell us about the global differences in the nature of work .

- Occupations are indeed different around the world.
 - In high-skilled occupations differences in RTI are strongly related to the development level, but in other occupations not so much
- Technology contributes the most to the cross-country differences in tasks, especially among workers in high- and middle-skilled occupations.
- Globalization contributes the most among workers in low-skilled occupations and offshorable occupations.
- Skill supply matters more for the overall differences than for differences within occupational groups – skills determine structure of broad occupation groups.

- Thanks for listening
- Piotr Lewandowski piotr.lewandowski@ibs.org.pl www.ibs.org.pl @ibs_warsaw

