Occupational routine intensity and the adjustment to job loss
 Evidence from mass layoffs

2019 IBS and the World Bank Conference: Globalization, work, and distributional tensions in Europe and Central Asia, Warsaw

Uwe Blien

University of Bamberg, IAB, IZA
Wolfgang Dauth
University of Würzburg, IAB, IZA
Duncan Roth
IAB

THIS PAPER

Overview

- How does a worker's ability to adjust to economic shocks vary with the occupational intensity of routine tasks?
- Exposure to changing environment due to technological progress.
- Employment share of routine-intensive occupations has been falling over the past decades.
- Effect of job loss on future employment and wage earnings.
- To ensure an exogenous source of unemployment we use data from mass layoffs:
- Compare workers with identical careers but who work in occupations with different degrees of routine intensity.
- Use of a difference-in-differences approach.

THIS PAPER

Findings

- All workers affected by a mass layoff suffer from persistent negative effects on subsequent employment and earnings.
- These effects are considerably more pronounced for workers that were formerly employed in routine-intensive occupations.
- Negative earnings effects can be decomposed into similarly sized effects on employment duration and wages.
- Chance of re-employment in higher-quality jobs reduced.
- Transitions into other occupations or industries more likely.
- Adjustment more difficult in light of falling employment shares of routine-intensive occupations and devaluation of human capital.

DATA AND VARIABLES
 Mass layoff sample

- Identification of mass layoff workplaces based on the Establishment History Panel (BHP):
- Annual dataset of all establishments in Germany.
- Mass layoffs take place between 1980 and 2010.
- Match with the full employment biographies of affected workers:
- Taken from Integrated Employment Biographies (IEB).
- Only those with at least 3 years of tenure in the establishment.
- 12 quarters before and up to 24 quarters after the mass layoff.
- In total 9,365 establishments and 342,045 workers.

DATA AND VARIABLES

Descriptive statistics

	1980-89		1990-99		2000-10	
	ML sample	Random	ML sample	Random	ML sample	Random
Manufacturing	$\begin{gathered} 73.41 \\ (44.18) \end{gathered}$	$\begin{array}{r} 48.37 \\ (49.97) \end{array}$	$\begin{array}{r} 65.68 \\ (47.48) \end{array}$	$\begin{array}{r} 39.27 \\ (48.83) \end{array}$	$\begin{array}{r} 56.25 \\ (49.61) \end{array}$	$\begin{array}{r} 37.58 \\ (48.43) \end{array}$
Electricity, gas	$\begin{array}{r} 0.34 \\ (5.80) \end{array}$	$\begin{array}{r} 1.75 \\ (13.11) \end{array}$	$\begin{array}{r} 2.81 \\ (16.54) \end{array}$	$\begin{array}{r} 1.72 \\ (13.02) \end{array}$	$\begin{array}{r} 0.89 \\ (9.38) \end{array}$	$\begin{array}{r} 1.28 \\ (11.22) \end{array}$
Construction	$\begin{array}{r} 2.64 \\ (16.04) \end{array}$	$\begin{array}{r} 6.44 \\ (24.54) \end{array}$	$\begin{array}{r} 1.20 \\ (10.87) \end{array}$	$\begin{array}{r} 7.23 \\ (25.90) \end{array}$	$\begin{array}{r} 1.40 \\ (11.74) \end{array}$	$\begin{array}{r} 3.83 \\ (19.20) \end{array}$
Wholesale/retail trade	$\begin{array}{r} 12.84 \\ (33.45) \end{array}$	$\begin{array}{r} 8.70 \\ (28.18) \end{array}$	$\begin{array}{r} 13.86 \\ (34.55) \end{array}$	$\begin{array}{r} 9.52 \\ (29.35) \end{array}$	$\begin{array}{r} 18.74 \\ (39.02) \end{array}$	$\begin{array}{r} 11.20 \\ (31.53) \end{array}$
Hotels and restaurants	$\begin{array}{r} 0.31 \\ (5.60) \end{array}$	$\begin{array}{r} 0.43 \\ (6.55) \end{array}$	$\begin{array}{r} 0.76 \\ (8.67) \end{array}$	$\begin{array}{r} 0.70 \\ (8.32) \end{array}$	$\begin{array}{r} 1.07 \\ (10.28) \end{array}$	$\begin{array}{r} 1.11 \\ (10.49) \end{array}$
Transport, storage	$\begin{array}{r} 3.10 \\ (17.34) \end{array}$	$\begin{array}{r} 4.58 \\ (20.91) \end{array}$	$\begin{array}{r} 8.77 \\ (28.29) \end{array}$	$\begin{array}{r} 4.83 \\ (21.45) \end{array}$	$\begin{array}{r} 6.85 \\ (25.27) \end{array}$	$\begin{array}{r} 5.95 \\ (23.66) \end{array}$
Financial intermed.	$\begin{array}{r} 1.41 \\ (11.79) \end{array}$	$\begin{array}{r} 5.11 \\ (22.01) \end{array}$	$\begin{array}{r} 1.51 \\ (12.18) \end{array}$	$\begin{array}{r} 5.88 \\ (23.52) \end{array}$	$\begin{array}{r} 3.03 \\ (17.15) \end{array}$	$\begin{array}{r} 5.52 \\ (22.83) \end{array}$
Real estate, rental	$\begin{array}{r} 5.95 \\ (23.65) \end{array}$	$\begin{array}{r} 3.48 \\ (18.33) \end{array}$	$\begin{array}{r} 5.41 \\ (22.63) \end{array}$	$\begin{array}{r} 4.92 \\ (21.62) \end{array}$	$\begin{array}{r} 11.77 \\ (32.23) \end{array}$	$\begin{array}{r} 10.35 \\ (30.47) \end{array}$
50-99	$\begin{array}{r} 25.09 \\ (43.36) \end{array}$	$\begin{array}{r} 16.59 \\ (37.20) \end{array}$	$\begin{array}{r} 28.08 \\ (44.94) \end{array}$	$\begin{array}{r} 21.28 \\ (40.93) \end{array}$	$\begin{array}{r} 32.20 \\ (46.72) \end{array}$	$\begin{array}{r} 22.71 \\ (41.90) \end{array}$
100-199	$\begin{array}{r} 24.90 \\ (43.24) \end{array}$	$\begin{array}{r} 14.49 \\ (35.20) \end{array}$	$\begin{array}{r} 26.60 \\ (44.19) \end{array}$	$\begin{gathered} 16.71 \\ (37.31) \end{gathered}$	$\begin{array}{r} 25.97 \\ (43.85) \end{array}$	$\begin{array}{r} 18.93 \\ (39.18) \end{array}$
200-499	$\begin{array}{r} 28.60 \\ (45.19) \end{array}$	$\begin{array}{r} 19.84 \\ (39.88) \end{array}$	$\begin{array}{r} 25.54 \\ (43.61) \end{array}$	$\begin{array}{r} 21.03 \\ (40.75) \end{array}$	$\begin{array}{r} 21.15 \\ (40.83) \end{array}$	$\begin{array}{r} 22.23 \\ (41.58) \end{array}$
500+	$\begin{array}{r} 21.41 \\ \text { (41.02) } \end{array}$	$\begin{array}{r} 49.08 \\ (49.99) \end{array}$	$\begin{array}{r} 19.79 \\ (39.84) \end{array}$	$\begin{array}{r} 40.99 \\ (49.18) \end{array}$	$\begin{array}{r} 20.68 \\ (40.50) \end{array}$	$\begin{array}{r} 36.13 \\ (48.04) \end{array}$
East	$\begin{array}{r} 2.41 \\ (15.35) \end{array}$	$\begin{array}{r} 3.53 \\ (18.45) \end{array}$	$\begin{array}{r} 17.86 \\ (38.30) \end{array}$	$\begin{array}{r} 16.80 \\ (37.38) \end{array}$	$\begin{array}{r} 14.61 \\ (35.32) \end{array}$	$\begin{array}{r} 16.09 \\ (36.75) \end{array}$

DATA AND VARIABLES

Routine-intensity measure

- Occupations differ with respect to their contents and specifically to the extent that they contain routine components:
- Use of machines easier to implement in jobs characterised by routines.
- To obtain information on job contents we use data from an employee survey (Erwerbstätigenbefragung):
- Information on job characteristics at the worker level.
- Conducted by the Federal Institute for Vocational Education and Training (BIBB) and the Institute for Employment Research (IAB).
- Use data from the waves 1985, 1991, 1999.

DATA AND VARIABLES

Routine-intensity measure

- Focus on two items in order to assess the extent of an occupation's routine intensity:
- Are the contents of your job minutely described by the employer?
- Does your job sequence repeat itself regularly?
- Possible answers: 'almost always', 'often', 'occasionally', 'rarely', 'hardly anytime'.
- The routine-intensity variable is defined as the fraction of workers reporting both items to be the case 'almost always'.

DATA AND VARIABLES

Descriptive statistics

	1980-89		1990-99		2000-10	
	ML sample	Random	ML sample	Random	ML sample	Random
Routine	$\begin{aligned} & 12.03 \\ & \text { (9.69) } \end{aligned}$	$\begin{aligned} & 11.56 \\ & \text { (9.73) } \end{aligned}$	$\begin{array}{r} 13.48 \\ (11.61) \end{array}$	$\begin{array}{r} 13.03 \\ (11.18) \end{array}$	$\begin{array}{r} 12.33 \\ (10.66) \end{array}$	$\begin{array}{r} 12.33 \\ (10.87) \end{array}$
Earnings	$\begin{array}{r} 8,536.50 \\ (3,966.27) \end{array}$	$\begin{array}{r} 8,787.09 \\ (4,369.54) \end{array}$	$\begin{array}{r} 9,893.81 \\ (6,281.68) \end{array}$	$\begin{array}{r} 9,671.34 \\ (5,938.22) \end{array}$	$\begin{aligned} & 11,134.60 \\ & (9,389.24) \end{aligned}$	$\begin{aligned} & 10,642.98 \\ & (8,148.71) \end{aligned}$
Duration	$\begin{aligned} & 91.04 \\ & (4.84) \end{aligned}$	$\begin{aligned} & 90.59 \\ & (4.72) \end{aligned}$	$\begin{aligned} & 91.08 \\ & (4.89) \end{aligned}$	$\begin{aligned} & 90.65 \\ & (4.32) \end{aligned}$	$\begin{aligned} & 91.11 \\ & (4.56) \end{aligned}$	$\begin{aligned} & 90.66 \\ & (4.23) \end{aligned}$
Wage	$\begin{array}{r} 93.72 \\ (43.12) \end{array}$	$\begin{array}{r} 96.91 \\ (47.78) \end{array}$	$\begin{aligned} & 108.54 \\ & (68.41) \end{aligned}$	$\begin{aligned} & 106.58 \\ & (65.10) \end{aligned}$	$\begin{array}{r} 122.07 \\ (102.57) \end{array}$	$\begin{aligned} & 117.23 \\ & (89.42) \end{aligned}$
Female	$\begin{array}{r} 27.79 \\ (44.80) \end{array}$	$\begin{array}{r} 30.80 \\ (46.17) \end{array}$	$\begin{array}{r} 30.54 \\ (46.06) \end{array}$	$\begin{array}{r} 33.56 \\ (47.22) \end{array}$	$\begin{array}{r} 27.18 \\ (44.49) \end{array}$	$\begin{array}{r} 29.21 \\ (45.47) \end{array}$
Foreign	$\begin{array}{r} 16.13 \\ (36.78) \end{array}$	$\begin{array}{r} 12.40 \\ (32.96) \end{array}$	$\begin{array}{r} 11.59 \\ (32.01) \end{array}$	$\begin{array}{r} 8.92 \\ (28.51) \end{array}$	$\begin{array}{r} 8.25 \\ (27.51) \end{array}$	$\begin{array}{r} 7.97 \\ (27.09) \end{array}$
Low skill	$\begin{array}{r} 28.45 \\ (45.12) \end{array}$	$\begin{array}{r} 26.39 \\ (44.08) \end{array}$	$\begin{array}{r} 15.98 \\ (36.65) \end{array}$	$\begin{array}{r} 13.80 \\ (34.49) \end{array}$	$\begin{array}{r} 13.22 \\ (33.87) \end{array}$	$\begin{array}{r} 9.39 \\ (29.17) \end{array}$
Medium skill	$\begin{array}{r} 68.15 \\ (46.59) \end{array}$	$\begin{array}{r} 68.41 \\ (46.49) \end{array}$	$\begin{array}{r} 75.93 \\ (42.75) \end{array}$	$\begin{array}{r} 77.08 \\ (42.03) \end{array}$	$\begin{array}{r} 75.17 \\ (43.20) \end{array}$	$\begin{array}{r} 75.65 \\ (42.92) \end{array}$
High skill	$\begin{array}{r} 3.40 \\ (18.13) \end{array}$	$\begin{array}{r} 5.19 \\ (22.19) \end{array}$	$\begin{array}{r} 8.08 \\ (27.26) \end{array}$	$\begin{array}{r} 9.13 \\ (28.80) \end{array}$	$\begin{array}{r} 11.60 \\ (32.03) \end{array}$	$\begin{array}{r} 14.96 \\ (35.67) \end{array}$
Tenure	$\begin{array}{r} 7.91 \\ (2.80) \end{array}$	$\begin{array}{r} 6.87 \\ (2.72) \end{array}$	$\begin{array}{r} 9.49 \\ (5.39) \end{array}$	$\begin{array}{r} 7.41 \\ (4.69) \end{array}$	$\begin{aligned} & 10.14 \\ & (5.98) \end{aligned}$	$\begin{array}{r} 7.35 \\ (4.77) \end{array}$
Observations	95,529	191,058	137,929	275,858	108,587	217,174

DESCRIPTIVE ANALYSIS The effects of mass layoffs

$\left.\begin{array}{|l|r|r|r|}\hline & \begin{array}{rl}\text { Quarter-1 } \\ \text { (before ML) }\end{array} & \begin{array}{r}\text { Quarter 1 } \\ \text { (after ML) }\end{array} & \text { \% change } \\ \hline & \text { Quarterly Earnings }\end{array}\right)$

DESCRIPTIVE ANALYSIS The effects of mass layoffs

DESCRIPTIVE ANALYSIS The effects of mass layoffs

EMPIRICAL ANALYIS

Identification strategy and model

- Event-study approach:
- $y_{i t}=\alpha+\sum_{k \neq-1}\left[\beta_{k} R I_{i} \times I[t=k]+\delta_{k} I[t=k]\right]+\mu_{i}+\varphi_{t}+w_{i t}$
- Outcome variables:
- Quarterly earnings (in logs).
- Other outcomes: days in employment per quarter, average daily wage.
- Standard errors clustered at the occupational level.

RESULTS

Baseline specification

RESULTS
Baseline specification

| RRI | Relative (k=1) | Relative (average) | Absolute (cum.) |
| :--- | ---: | ---: | ---: | ---: |
| | Earnings | | |
| Percentage point | -0.07 | -0.03 | $-3,226.17$ |
| Standard deviation | -0.53 | -0.31 | $-29,797.25$ |
| Interdecile range | -0.84 | -0.60 | $-43,262.00$ |
| | Employment | | |
| Percentage point | -0.04 | -0.02 | -24.79 |
| Standard deviation | -0.33 | -0.18 | -244.72 |
| Interdecile range | -0.63 | -0.39 | -443.35 |
| | Daily earnings | | |
| Percentage point | -0.03 | -0.02 | |
| Standard deviation | -0.29 | -0.16 | |
| Interdecile range | -0.57 | -0.35 | |

RESULTS

Decomposition I

- Can we say anything about the source of these effects?
- Quarterly earnings are the product of days in employment and an average daily wage.
- Estimate corresponding models for these variables (in logs).
- The estimated coefficients add up to those from the earnings model.
- Both components appear equally important in magnitude:
- Employees from routine-intensive occupations are on average less likely to find employment and are employed in jobs paying lower wages.
- Differences in pre-treatment trends are more pronounced for earnings and wages than for employment duration.

RESULTS

Decomposition I

RESULTS

Decomposition I

RESULTS
 Decomposition II

- How do the careers of workers develop after the mass layoff?
- Does the initial degree of routine intensity affect the type of jobs that are subsequently found?
- Differentiate subsequent employment according to average wages as well as regional and occupational mobility.
- Initial employment in routine-intensive occupations decreases the chance of entering higher-paying jobs.
- It leads to higher occupational, but lower regional mobility.
- Moving into other occupations potentially associated with costs due to loss of human capital.

RESULTS

Decomposition II

RESULTS

Decomposition II

RESULTS

Decomposition II

RESULTS

Decomposition II

RESULTS

Decomposition II

RESULTS

Decomposition II

RESULTS
Effect heterogeneity

Earnings	Relative (k=1)	Relative (average)	Absolute (cum.)
Baseline	$-0.07(0.01)$	-0.03	$-3,226.17$
Unskilled	$-0.04(0.01)$	-0.03	-698.46
Vocational	$-0.05(0.01)$	-0.02	$-2,347.83$
College	$-0.04(0.02)$	-0.02	$-7,109.84$
23-29 years	$-0.06(0.01)$	-0.03	$-2,410.99$
$30-44$ years	$-0.07(0.01)$	-0.03	$-3,395.97$
$45-51$ years	$-0.07(0.01)$	-0.04	$-2,883.65$
Manufacturing	$-0.06(0.00)$	-0.03	$-2,710.34$
Non-manufacturing	$-0.04(0.02)$	-0.03	$-4,010.17$
Less than 90%	$-0.07(0.01)$	-0.04	$-3,476.72$
More than 90%	$-0.06(0.01)$	-0.03	$-2,623.26$

CONCLUSION

- How does recovery from job loss vary with an occupation's routine intensity?
- Employment share of routine-intensive occupations declining.
- Use of mass layoffs to identify exogenous shock.
- Persistent negative effects in terms of subsequent employment duration and earnings.
- Substantially larger for individuals formerly employed in routineintensive occupations.
- Adjustment to shocks more difficult for this group of individuals.
- This form of human capital has become less valuable, potentially due to technological progress.

Thanks for your attention.

Uwe Blien
Wolfgang Dauth Duncan Roth
(uwe.blien@iab.de)
(wolfgang.dauth@iab.de)
(duncan.roth@iab.de)

EMPIRICAL ANALYIS
 Identification strategy and model

- Potential-outcomes framework:
- Treatment: mass layoff.
- Treatment measure: routine intensity in the quarter before the layoff.
- The expected marginal effect of the treatment measure on the outcome is:
- $E\left[d y_{t}{ }^{1} \mid t \geq z\right]=E\left[\beta_{t} d T \mid t \geq z\right]$
- β_{t} is a quarter-specific parameter.
- Problem of identification:
- What would have been the marginal effect of the treatment measure in the absence of treatment?
- $E\left[d y_{t}{ }^{0} \mid t \geq z\right]$ is not observable.

EMPIRICAL ANALYIS
 Identification strategy and model

- The marginal effect of the treatment measure can be estimated for the pre-treatment period (given that treatment is not active):
- $E\left[d y_{t}{ }^{0} \mid t<z\right]=E\left[\beta_{t} d T \mid t<z\right]$
- Assume that the marginal treatment effect interacts linearly with time.
- Regress the estimated year effects on a linear time trend:
- $\hat{\beta}_{t}=\gamma_{0}+\gamma_{1} t+v_{t}$
- The counterfactual marginal effect of the treatment measure is:
- $E\left[d y_{t}{ }^{0} \mid t \geq z\right]=E\left[\gamma_{0}+\gamma_{1} t \mid t \geq z\right] d T$
- Accordingly, the treatment effect is given by:
- $E\left[d y_{t}{ }^{1} \mid t \geq z\right]-E\left[d y_{t}{ }^{0} \mid t \geq z\right]=E\left[\beta_{t}-\gamma_{0}-\gamma_{1} t\right] d T$

