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Abstract. This paper decomposes productivity growth across highly developed OECD coun-
tries in the period 1972-2000 into components attributable to domestic R&D output, a catch-
up effect, and international technology diffusion via imports of hi-tech products.

Two alternative specifications of “productivity growth” are considered: (i) increments of
the conventional residual measure of total factor productivity (computed under the assump-
tion that the production function takes both physical and human capital as inputs), and (ii)
the Malmquist productivity index, computed non-parametrically from a DEA-based growth
accounting exercise.

The methodology consists in using panel data techniques to regress productivity growth
against our constructed measures of domestic R&D output, technological catch-up and tech-
nology diffusion. Domestic R&D output is derived using the Schumpeterian specification
taken from fully endogenous R&D-based growth models while the catch-up and technology
diffusion terms are based upon accumulation of the human-capital augmented and weighted
sum of “technology flows”, proxied by appropriate measures of technological distance between
the source and destination country in each pair.

Our results indicate that all of these components have been important for productivity
growth in OECD countries in the considered period. The estimated relative magnitudes vary
significantly across countries though. On average, productivity growth has been fueled mainly
by technology diffusion and technological catch-up, whereas domestic innovations account on
average for only 11% of productivity growth.
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1 Introduction

Economic growth may be driven by a wide range of factors. Within the supply side
approach, one may group them into three broad categories: (i) physical capital accu-
mulation,(ii) human capital accumulation and population growth and (iii) total factor
productivity (TFP) growth. Even though each of these three categories poses certain
difficulties to adequate measurement, it is certainly the last, productivity category,
encompassing all developments in available production technologies as well as changes
in the efficiency of their usage in actual economic environments, which is the least
straightforward to capture.

R&D-driven technological progress is the component of greatest importance to
growth theorists because it offers the possibility of sustained technological progress.
In reality, however, as opposed to closed-economy growth models, total factor pro-
ductivity may grow both due to domestic R&D accomplishments and international
technology diffusion wherein technological developments arrive from abroad. Only for
technological leaders such as Japan or the US does it seem plausible that own R&D
produces the majority of actually observed technological change; it is hardly possi-
ble for smaller and/or lagging economies, though. One can thus credibly hypothesize
that technological diffusion must have played a major role in world’s technological ad-
vancement throughout the history. Furthermore, technology diffusion has many faces:
countries may advance due to their own technological catch-up by gradually learning to
apply frontier technologies, or due to R&D-induced catch-up where this learning pro-
cess is accelerated by domestic, “adaptive” or “imitative” R&D (cf. Griffith, Redding
and Van Reenen, 2004). Finally, they may also advance due to the imports of high-tech
products and services or foreign direct investment: both of these phenomena provide
direct channels through which frontier knowledge could be passed to the converging
economy.

The current article relates to four complementary strands of literature. First of all,
it relates to the old tradition of growth accounting studies (cf. Solow, 1957; Barro,
1999; Caselli, 2005) where empirically observed growth in GDP per worker in the
medium-to-long run is decomposed into factors attributable to physical capital ac-
cumulation, accumulation of other reproducible factors such as human capital, and
the growth of TFP which is identified as a (Solow) residual value. The second related
strand of literature applies deterministic non-parametric methods of productivity anal-
ysis to macroeconomic data (Kumar and Russell, 2002; Henderson and Russell, 2005;
Jerzmanowski, 2007; Badunenko, Henderson and Zelenyuk, 2008; Growiec, 2008). This
literature adds a new dimension to the aforementioned growth accounting procedures
by removing the assumption that the production function is Cobb–Douglas, or has
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any firm, predefined functional form. From this literature, we draw the concept of
the Malmquist productivity index which measures residual technological progress in a
given country without convoluting it with production function misspecification. The
third area of research which we extensively draw from is preoccupied with Bayesian
Model Averaging (BMA) methods, useful for inferring about the most appropriate
model specification when explanatory variables are unknown and possibly, strongly in-
terrelated (cf. Fernandez, Ley, and Steel, 2001; Sala-i-Martin, Doppelhofer, and Miller,
2004). We shall, in particular, use these methods to derive the most appropriate lag
structure for our considered variables. The fourth major strand of literature which
we invoke deals with empirical measures of international technology transfer. Technol-
ogy diffusion models, initialized by Nelson and Phelps (1966) and reviewed recently
by Benhabib and Spiegel (2005), are juxtaposed here with standard approaches to
modeling technological change in growth theory (cf. Jones, 1999) which assume that
technological improvements arrive primarily due to R&D output. The articles most
closely related to this one are therefore Ha and Howitt (2007) and, most importantly,
Madsen (2008a), who test the empirical relevance of various alternative specifications
of technological progress found across the theoretical literature.

Given this background, the contribution of the current article is threefold. First of
all, we extend the growth accounting literature by providing a decomposition of TFP
growth into the effects of domestic R&D, international technology diffusion, and two
complementary measures of technological catch-up. We also provide a qualification
to the results obtained hitherto by replacing TFP growth (computed using a Cobb–
Douglas production function) with the Malmquist productivity index which measures
technological progress without imposing a functional form on the production technol-
ogy, and by comparing both cases. Second, we follow Madsen (2008a) in applying
panel data techniques to estimate the relative impacts of R&D output and technology
diffusion on total observed technological progress. We however complement his work
by considering the Malmquist productivity index and measures of diffusion that are
explicitly based on volumes of trade in high-tech goods and services. We also resolve
the uncertainty with regard to the appropriate lag structure of the considered variables
with the use of the BMA method. Third, we disentangle diffusion effects driven by
international trade from effects stemming from a “pure” catch-up process, where each
given country catches up with the current technology frontier as well as catch-up driven
by adaptive/imitative R&D (Griffith, Redding, and Van Reenen, 2004). This decom-
position could be obtained here only thanks to the use of a non-parametric approach
to productivity analysis.

The remainder of the article is structured as follows. In Section 2, we lay out our
empirical methodology. Of particular interest is the stepwise procedure which we used
to construct the values of our measures of R&D output and technology transfer. In
Section 3, we discuss our data sources as well as provide a first cursory look at the
properties of our constructed variables. In Section 4, we present our main results,
i.e., a decomposition of total factor productivity growth into components attributable
to domestic R&D, catch-up, and import-driven international technology diffusion. In
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a separate subsection we contrast these results, based on the Malmquist productiv-
ity index, with ones attainable under the standard Cobb–Douglas function paradigm.
Section 5 concludes.

2 Empirical methodology

Our empirical investigation is carried out in the following stages:

1. Construction of the dependent variable: productivity growth. This
is done in two ways – first, as the Malmquist index computed from the non-
parametric Data Development Analysis method (cf. Kumar and Russell, 2002;
Henderson and Russell, 2005; Jerzmanowski, 2007; Badunenko, Henderson, and
Zelenyuk, 2008), and second, as total factor productivity growth from the stan-
dard, Cobb–Douglas function-based Solow decomposition (Solow, 1957), for each
country and year. It is calculated both upon the original data on annual GDP
per worker (including the business cycle component) and upon HP-filtered data
which capture medium- and long-term trends only (cf. Hodrick and Prescott,
1997). Should the countries across the sample differ significantly in terms of
their business cycles, solely HP filtered data will be employed in the analysis.

2. Construction of explanatory variables: R&D output, catch-up and
technology diffusion. Since neither of them is directly measurable, R&D out-
put and the volume of technology transfer are constructed according to theoreti-
cal formulas obtained from state-of-the-art growth models (cf. Madsen, 2008a,b;
Benhabib and Spiegel, 2005). We also take advantage of our non-parametric
estimates of the world technology frontier to compute auxilliary non-standard
measures of technological catch-up.

3. Characterization of the dataset. Having constructed the variables, we in-
vestigate their basic properties such as common trends, relative variability, and
cross-correlations. This should provide an initial intuition on the relative impor-
tance of R&D, technology diffusion, and catch-up for productivity growth.

4. Lag structure selection for our explanatory variables. Since the impact
of considered explanatory variables on productivity growth might be delayed, it
is particularly important to take this lag into account in the empirical analysis.
Due to high collinearity, the lag structure should not be determined within a
panel econometric model, though. To resolve this problem we shall thus employ
the Bayesian Model Averaging (BMA, cf. e.g. Sala-i-Martin, Doppelhofer, and
Miller, 2004) framework to cross-sectional data to establish the lag structure and
inclusion’s probability of all explanatory variables. Subsequently, the results are
applied to panel econometric analysis.
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5. Econometric analysis using panel data. At this stage, we carry out an
econometric procedure aimed at disentangling the respective impacts of R&D
and technology diffusion on productivity growth in a 32-year long panel of 19
OECD countries.

6. Robustness checks, aimed at testing the sensitivity of our results to changes in
the methodology such as substituting the non-parametric measure of productivity
growth with the standard measure of TFP growth, changing lag lengths, and
altering the formulas for R&D output and technology diffusion.

2.1 The parametric vs. non-parametric approach

As already mentioned above, productivity growth has been calculated in two ways. The
main contribution of this paper is, however, to analyze the determinants of productivity
growth computed nonparametrically, i.e. the Malmquist productivity index. This
requires the use of Data Envelopment Analysis (DEA).

2.1.1 Data Envelopment Analysis

The idea behind the DEA method is to construct the best-practice production function,
nonparametrically, as a convex hull of production techniques (input–output configura-
tions) currently used in countries present in the data.

The production function is then inferred indirectly as a fragment of the boundary
of this convex hull for which is output is maximized given inputs. More precisely, for
each observation i, output yi is decomposed as:

yi = Eif(xi) (1)

i.e., into a product of the maximum attainable output given inputs y∗
i ≡ f(xi) and the

efficiency index Ei ∈ (0, 1]. In other words, the efficiency index Ei measures (vertical)
distance to the technology frontier, while the frontier itself is computed nonparametri-
cally as y∗

i = f(xi). It should be noted that the vector of inputs, xi, could in principle
be of any length n ∈ N, but if one distinguishes too many types of inputs then (i) the
DEA could run into numerical problems due to the “curse of dimensionality” (cf. Färe
et al., 1994), and (ii) the efficiency levels could be overestimated due to too small a
sample size.

Formally, the (output-based) DEA method is a linear programming technique al-
lowing one find the efficiency index Ej for each unit j = 1, 2, ..., I in the sample such
that its reciprocal is maximized given a series of feasibility constraints (cf. Fried, Knox

5



Lovell and Schmidt, 1993):

max
{θj ,λ1,...,λI}

θj

s.t. θjyj ≤

I∑

i=1

λiyi,

I∑

i=1

λix1i ≤ x1j ,

I∑

i=1

λix2i ≤ x2j ,

... (2)
I∑

i=1

λixni ≤ xnj ,

λi ≥ 0, i = 1, 2, ..., I.

The (output-oriented Debreu–Farell) efficiency index Ej is computed as the reciprocal
of θi (that is, Ei = 1/θi).

Since the data contain a finite number of data points, one for each country and each
year, by construction the DEA–based production function will be piecewise linear and
its vertices will be the actually observed efficient input–output configurations (i.e. non-
dominated by any linear combination of other observed input–output configurations).

2.1.2 Advantages and limitations of the approach

The DEA is a deterministic, data-driven approach to deriving the production function
from observed input–output pairs. Its unquestionable strength lies in the fact that it
does not require any particular functional form of the aggregate production function
(provided that it has constant returns to scale and satisfies the free-disposal property),
and provides testable predictions on its shape instead. Indeed, the usual assumption
of a Cobb–Douglas production function may lead to marked biases within growth
accounting or levels accounting exercises leading to an overestimation of the role of
total factor productivity (TFP), as argued by Caselli (2005) and Jerzmanowski (2007).
As for the predicted shape of the production function, one obvious fact is that due to
the characteristics of the method, it will be piecewise linear for any finite data sample.
With reasonably large data samples, however, certain parametric forms could be tested
formally against the DEA-based nonparametric benchmark, such as the CES or the
Cobb–Douglas (presumably leading to a rejection of the latter).

There are important limitations to the DEA approach as well. First, its determin-
istic character makes it silent on the estimation precision of the aggregate production
function and of the predicted efficiency levels if inputs and outputs are subject to
stochastic shocks.
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Second, the DEA provides a biased proxy of the actual technological frontier. Cer-
tainly, even the most efficient units in the sample could possibly operate with some
extra efficiency: they are themselves aggregates of smaller economic units and must
therefore have some internal heterogeneity. Taking account of that, the frontier could
easily be shifted upwards; efficiency in nevertheless normalized to 100% for the most
efficient units in the sample.

Third, the DEA constructs the production function basing on the efficient data
points. This makes it naturally sensitive to outliers and measurement error. On the
one hand, outliers characterized by obvious errors are easily spotted because they spoil
the whole subsequent analysis. Systematic mismeasurement associated with some units
could be left unnoticed, however, if these units fall short of the frontier. The data have
been carefully checked, though, so that one can be confident that the risk of errors has
been minimized.

2.1.3 The Malmquist productivity index

To compute the Malmquist productivity index from data on the shape of the world
technology frontier, we shall carry out a nonparametric growth accounting exercise
(cf. Growiec, 2008). With three factors of production, as we have in our analysis,
K, LU , LS (to be described later), the “Fisher-ideal” (cf. Henderson and Russell, 2005)
decomposition of the year-on-year productivity ratio for each country i (index supressed
for brevity) is the following (denoting the current year as t):

yt(Kt, L
U
t , LS

t )

yt−1(Kt−1, L
U
t−1, L

S
t−1)

=
Et

Et−1

·
y∗

t (Kt, L
U
t , LS

t )

y∗
t−1(Kt−1, L

U
t−1, L

S
t−1)

=

=
Et

Et−1
︸ ︷︷ ︸

efficiency

·

√

y∗
t (Kt, L

U
t , LS

t )

y∗
t−1(Kt, L

U
t , LS

t )

y∗
t (Kt−1, L

U
t−1, L

S
t−1)

y∗
t−1(Kt−1, L

U
t−1, L

S
t−1)

︸ ︷︷ ︸

techn. progress

· (3)

·

√

y∗
t (Kt, LU

t , LS
t )

y∗
t (Kt−1, LU

t−1, L
S
t−1)

y∗
t−1(Kt, LU

t , LS
t )

y∗
t−1(Kt−1, LU

t−1, L
S
t−1)

︸ ︷︷ ︸

factor accumulation

,

where y∗
t ≡ f(xt) denotes the maximum output attainable at time t given inputs

contained in the vector xt.
The decomposition of GDP growth defined by Eq. (3) singles out the dynamic

changes in efficiency, shifts in the technology frontier given factor endowments, and
factor accumulation holding the technological frontier fixed. The product of the “effi-
ciency change” and “technological progress” factors is the (output-oriented) Malmquist
productivity index (cf. Fried, Knox Lovell, and Schmidt, 1993) which we denote as
Mit. It measures, for each country i and year t, the total change in productivity which
resulted from anything but factor accumulation. In other words, the Malmquist produc-
tivity index captures the total productivity improvement under technologies actually
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used in the given country, whereas our “technological progress” index measures the
total productivity improvement under frontier technology, given the country’s factor
endowments.

2.1.4 TFP growth

Compared with the nonparametric approach to measuring productivity growth, the
standard Solow decomposition is very straightforward. It consists in computing the
growth rate of TFP, Ait, computed as a residual from the Cobb–Douglas production
function Yit = AitK

α
it(L

S
it + LU

it)
1−α. The usual choice of a Cobb–Douglas production

function has two major limitations, though: (i) as opposed to the DEA approach, it
does not allow one to distinguish between technological progress and efficiency growth,
and (ii) the explicit assumption of a unitary elasticity of substitution between the
factors of production is disputable empirically (cf. e.g. Duffy and Papageorgiou, 2000).
What is also important here, we only included a single aggregate measure of human
capital in our analysis, that is H = LS + LU . This implies a unitary elasticity of
substitution between skilled and unskilled labor, an assumption which was not taken
in the case of our nonparametric estimate of productivity growth.

2.2 Construction of the R&D output variable

The capacity of the economy to innovate might be evaluated on the basis of the number
of patents submitted per R&D worker, the share of R&D employment, and the current
“stock of technology”. There are however a few qualifications to this argument, as far
as empirical analyses are concerned, which ought to be explained. First, the “stock of
technology” is not directly measurable, and proxying it with the residual TFP mea-
sure requires the assumption that the production function be Cobb–Douglas. If the
elasticity of R&D output with respect to TFP is unitary, however, this problem might
be alleviated by specifying all variables in “per technology unit” terms, i.e., divided by
Ait (cf. Madsen, 2008a). Second, in panel data, hardly ever do the results of R&D ef-
forts bring out immediate results. A certain number of lags in variables must therefore
be included in the analysis. Third, there is fundamental uncertainty to the elasticity
parameters in the specification,in particular with respect to the parameter θ used in
the specification (4) below.

In our study, we shall therefore use the following empirical specification of R&D
output:

R&Dit =

Q
∑

q=0

ωRD
i,q

(
Pati,t−q

LA
i,t−q

)

(ℓA
i,t−q)

θ, (4)

where Q is the maximum lag length, Patit is the number of patents applied for in
country i at time t, LA

it is the total employment in the R&D sector, ℓA
it is the share of

R&D in overall employment, and βRD
i,q is a weighting factor.
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Intuitively, one should expect R&Dit to be stationary: in the long run, the share
of R&D employment should stabilize around a fixed value, and so should do the per-
researcher patent count. In the available data, however, we observe a general upward
trend in the R&D employment share and a general downward trend in patenting fre-
quency. These two trends offset each other so in the data, the R&D output measure is
stationary for a wide range of values of θ.

The elasticity of R&D output with respect to the share of population employed in
R&D, measured by θ, is a hidden parameter which cannot be directly measured. We
are not aware of any systematic empirical investigation which would try to infer the
value of θ from indirect evidence. For this reason, it would be of great importance to
assess the sensitivity of our results with respect to changes in this parameter. As a
base value for this parameter, we take θ = 0.5.

2.3 Measures of technology diffusion and catch-up

In the literature, technology diffusion and the catch-up process have been captured
empirically in a number of ways. On the one hand, the term may reflect a pure
convergence process, allowing countries to cover their distance the technological frontier
and thus catch up with the currently best performing countries (controlling for the
difference in factor endowments). On the other hand, however, it may also capture a
multi-directional import-driven diffusion process where technology improvements come
together with imports of high-technology products, and may well diffuse from less
productive to more productive countries as well.

We are going to distinguish between three different specifications of technology
transfer: (i) the pure catch-up effect, (ii) the R&D-induced catch-up effect (i.e. “the
second face of R&D”, cf. Griffith, Redding and Van Reenen, 2004), and (iii) technology
diffusion fueled by imports of hi-tech products (cf. Madsen, 2007, 2008a).

The pure catch-up effect can be specified as

PCUit =
R∑

r=0

ωPCU
i,r

Ei,t−r

Ei,t−r−1

∆
LS

i,t−r

Hi,t−r

(5)

where Eit is the efficiency index of country i at time t. The first term therefore
captures the distance of the country to the frontier given production inputs. We have
however substituted the measure of remaining distance to the frontier with a measure of
distance actually covered between t−1 and t. In theory, they ought to be proportional,
but this regularity need not always hold in empirical data. The constant R represents

the maximum lag in technological catch-up. The last term, ∆
LS

i,t−r

Hi,t−r
,1 is the annual

change in the ratio of total human capital within the skilled population to total human
capital. It is included to capture the change in ease of technology adoption which is
the higher, the more skilled the population becomes.

1Here and throughout the paper, we use the notation ∆Xt = Xt/Xt−1 for any variable X .
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The R&D-induced catch-up effect, capturing the “second face of R&D”, is computed
by interacting country’s R&D with its distance to frontier given factor inputs:

R&DCUit =
S∑

s=0

ωRDCU
i,s

Ei,t−s

Ei,t−s−1

∆
LS

i,t−s

Hi,t−s

(
Pati,t−s

LA
i,t−s

)

(ℓA
i,t−s)

θ. (6)

Technology diffusion fueled by imports of hi-tech products (cf. Madsen, 2008a) is,
in turn, measured as:

DIFFit =

P∑

p=0

ωDIFF
i,p

∑

j 6=i

Xij,t−p

Xi,t−p

·
Yj,t−p

Yi,t−p

(7)

where Xij,t is the volume of hi-tech trade from country j to country i, Xit is the total

volume of country i’s imports, and
Yj,t−p

Yi,t−p
represents GDP per worker in country j

relative to i. The last factor is included to provide a proxy for product variety, so that
technological diffusion between each particular pair of countries is rougly proportional
to the “technological distance” between them, but allowing for positive diffusion from
the richer to the poorer country as well.

2.4 Lag structure

Our approach to establishing the lag structure and solving the multicollinearity prob-
lem is to employ the BMA method to a cross-sectional database that consists of all
explanatory variables in each period and their four subsequent lags. The explained
variable is going to be either the Malmquist productivity index or TFP growth, in line
with the dependent variable used in the subsequent panel data analysis.

Results of the BMA exercise should help us determine the weights of all lagged
variables in constructing relevant aggregate variables for the four technological progress
categories described above (R&D, PCU, R&DCU and DIFF ). Only these aggregates
will be then subsequently used in our panel data study.

The BMA is a standard Bayesian solution to model uncertainty, where the pre-
diction and inference are based on a weighted average over all possible models under
consideration, rather than on one single regression model. One is required to assume
a prior probability of each model and a prior probability distribution over the param-
eters of each model. Estimated parameters of the models and prior probabilities are
then used to derive weights of all underlying regression models in the posterior model
choice probability distribution. Thus BMA approach directly addresses a question that
is central to our analysis: “how likely is it that a given regressor (i.e., given lag of a
certain explanatory variable) has a significant effect on the dependent variable?”

In our reserach we employ the priors suggested by Sala-i-Martin, Doppelhofer, and
Miller (2004) as well as Fernandez, Ley, and Steel (2001), properties of which have been
widely discussed in the literature. Hence, in our BMA application we assume that a
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Table 1: Weights of lags chosen on the basis of BMA.

Dependent variable: Malmquist productivity index
Coefficients Lag 0 Lag 1 Lag 2 Lag 3 Lag 4

ωRD 0.775 0.674 0.662 0.487 0.291
ωPCU 0.837 0.738 0.517 0.168 0.000
ωRDCU 0.725 0.641 0.473 0.139 0.000
ωDIFF 0.618 0.584 0.496 0.391 0.277

Source: own computations.

prior variable’s inclusion probability is random. Results of the BMA procedure taking
the Malmquist productivity index as our dependent variable are contained in Table 1.

Results of the BMA exercise are very much in line with economic intuition. First
of all, the impact of each particular variable decreases with the lag. In all considered
cases, the largest observed impact is the instantaneous one (lag 0), but it is nearly
as sizeable after one and two years as well. Secondly, we observe that the impacts
of domestic R&D and international technology diffusion on productivity growth are
much more extended in time than the impacts of catch-up effects. The coefficients on
catch-up terms lagged by four years are already zero while for the other regressors,
they are still larger than one third of their respective instantaneous impact.

2.5 Econometric methods

Our econometric approach is an application of panel data methods with country-specific
fixed effects to estimate a number of models upon our datasets. Time-invariant country-
specific fixed effects βSCE

i have been introduced into the basic model to control for
the heterogeneity of countries in the sample. These effects should be interpreted as
encompassing the differences in the initial stock of human capital accumulated in the
economies across the sample and/or the initial level of R&D output.

The general model which we estimate takes the form:

Mit = βSCE
i + βRDR&Dit + βPCUPCUit + βRDCUR&DCUit + βDIFFDIFFit + εit, (8)
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or in extensive notation:

Mit = βSCE
i + βRD

4∑

q=0

ωRD
q

(
Pati,t−q

LA
i,t−q

)

(ℓA
i,t−q)

θ + (9)

+ βPCU

3∑

r=0

ωPCU
r

Ei,t−r

Ei,t−r−1

∆
LS

i,t−r

Hi,t−r

+

+ βRDCU

3∑

s=0

ωRDCU
s

Ei,t−r

Ei,t−r−1

∆
LS

i,t−s

Hi,t−s

(
Pati,t−s

LA
i,t−s

)

(ℓA
i,t−s)

θ +

+ βDIFF

4∑

p=0

ωDIFF
p

∑

j 6=i

Xij,t−p

Xi,t−p

·
Yj,t−p

Yi,t−p

+ εit,

where the residual term εit is assumed to be spherical. The lag structure within each
of the four technological progress measures is pre-determined at this stage as it has
already been approximated within the BMA procedure.

2.6 Potential methodological problems

Three difficulties might arise while dealing with the aforementioned model.

1. Since highly aggregated data with high persistence will be employed in the anal-
ysis, the problems of autocorrelation and heteroscedasticity are likely to
occur. To resolve this problem, a series of panel Wooldridge’s tests likelihood-
ratio tests will be carried out, so that the estimation technique could be tailored
to their outcomes. Hence, the model will be estimated with the General Least
Squares (GLS) method with a correction for autocorrelation and heteroscedas-
ticity, should these be applicable.

2. At least some variables might by represented by non-stationary processes. If
this is the case, the results of the estimation will be biased. Therefore a second-
generation panel unit root test of Im, Pesaran and Shin (2003) will be applied
and non-stationary variables will be transformed so that they do not endanger
the analysis with spurious results anymore.

Eventually, the GLS estimator employed upon I(0) panel data takes the following
form:

β̂ = (
N∑

i=1

X̃ ′Ω̂−1X̃)−1

N∑

i=1

X̃ ′Ω̂−1Ỹ (10)

where Ω̂ is given by the orthogonal-deviation within-group residual intertemporal co-
variance matrix:

Ω̂ =
1

N

N∑

i=1

ˆ̃vi
ˆ̃v′
i (11)
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and ṽi is a T −1×1 vector of the form ṽi,t =
√

T−t
T−t+1

(vi,t −
1

T−t
(vi,t+1 + ...+vi,T )). The

matrix X̃ and the vector Ỹ describe, respectively, explanatory variables and explained
variables transformed with the orthogonal deviations method.

3 A look at the data

3.1 Data sources for the construction of our variables

International data on GDP and GDP per worker have been taken from the Penn World
Table 6.2 (cf. Heston, Summers and Aten, 2006), available for 1960-2003. The unit of
measurement is the PPP converted US dollar under constant prices as of year 2000.

The physical capital series have been calculated using the perpetual inventory
method (cf. Caselli, 2005). We have taken country-level investment shares as well
as government shares from the Penn World Tables 6.2. There are two polar stand-
points as for the role of government in capital accumulation: one is that government
spending is all consumption, and the other one is that it is all investment. We have
taken an intermediate stance here, assuming that the government invests the same
percentage of its GDP share as the private economy does. Under this assumption,
the overall (private and public) investment share is s/(1 − g) where s is the private
investment share and g is the government share. Furthermore, following Caselli (2005),
we assumed an annual depreciation rate of 6%.

Country-level human capital data have been taken from de la Fuente and Doménech
(2006) – D-D hereafter. The raw variables are shares of population aged 25 or above
having completed primary, some secondary, secondary, some tertiary, tertiary, or post-
graduate education. The considered dataset is of 5-year frequency only and it ends in
1995. Among all possible education attainment databases, the D-D dataset has been
given priority due to our trust in its superior quality. The original D-D series has
been extrapolated forward until the year 2000 using Cohen and Soto (2007) schooling
data as a predictor for the trends. Neither Barro and Lee (2001) nor Cohen and Soto
(2007) data could be used directly for this purpose because neither of them is (even
roughly) in agreement with the D-D dataset – nor with each other – in the period
where all datasets offer data points. Furthermore, the human capital data have been
extrapolated to all intermediate years as well. This was possibly due to the fact that
human capital variables are not susceptible to business cycle variations.

Data on the number of patents applied for, used as a measure of domestic R&D
intensity, have been provided to us by Madsen (2007, 2008a,b). The same applies to the
dataset on the number of R&D workers in each country and year within the 1970–2000
range. These datasets seem to be much more reliable than any other data available.2

For data on bilateral trade of hi-tech goods, we have used the freely available OECD
dataset (International Trade by Commodity Statistics), available for 1988-2007. These

2We are grateful to Professor Madsen for providing these data to us.

13



series have been extrapolated backwards using the data on total imports. The list of
commodities classified as hi-tech products is provided in the Appendix.

3.2 Stationarity concerns

To test stationarity, the t-test proposed by Im, Pesaran and Shin (2003) for unit roots
in heterogenous panels with cross-section dependence was used. The test is based on
the mean of individual denisity function t-statistics of each unit in the panel, with the
null hypothesis assuming that all series are non-stationary. The null hypotheses were
rejected in case of all variables used in further analysis: R&D, PCU, R&DCU, DIFF
(for all these variables their respective p-values were equal to 0.00), the Malmquist
productivity index M (0.00) and TFP growth ∆A (0.00). Therefore, all variables used
in the analysis are stationary.

4 Main results

The Data Envelopment Analysis, Bayesian Model Averaging, and econometric exercise
described above allow us to evaluate the relative significance of four basic components of
productivity growth across OECD countries: research and development (R&D) output,
pure and R&D-augmented catch-up effects, as well as technology diffusion fueled by
high-tech imports. Our results indicate that these components have contributed to
the productivity growth in OECD countries within the considered time slot, but the
estimated relative magnitudes vary significantly across countries.

4.1 Sources of the productivity growth under DEA decompo-

sition

The final specification of the model (9) is satisfactory from the statistical perspective
and takes the form of:

Mit = βSCE
i + βRD

4∑

q=0

ωRD
q

(
Pati,t−q

LA
i,t−q

)

(ℓA
i,t−q)

θ + (12)

+ βPCU

3∑

r=0

ωPCU
r

Ei,t−r

Ei,t−r−1

∆
LS

i,t−r

Hi,t−r

+

+ βRDCU

3∑

s=0

ωRDCU
s

Ei,t−r

Ei,t−r−1

∆
LS

i,t−s

Hi,t−s

(
Pati,t−s

LA
i,t−s

)

(ℓA
i,t−s)

θ +

+ βDIFF

4∑

p=0

ωDIFF
p

∑

j 6=i

Xij,t−p

Xi,t−p

·
Yj,t−p

Yi,t−p

+ εit,
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Table 2: Estimation results.

Method: Generalized Least Squares
Characteristics: heteroskedastic with cross-sectional correlation

Dependent variable: Malmquist productivity index
Coefficients Standard t-stat Prob > |t|

Error
βRD 2.923 0.621 4.71 0.000
βPCU 0.396 0.020 19.74 0.000
βRDCU 0.385 0.006 6.07 0.000
βDIFF 0.020 0.005 3.95 0.000
const 0.983 0.005 207.30 0.000

Wald test χ2(4) = 482.50
Log likelihood = 1688.702

Prob> χ2 = 0.000

Source: own computations.

where the estimates of respective β parameters, after correction for autocorrelation
and heteroskedasticity, take the values presented in Table 2.

Clearly, all variables have a positive and significant impact on the productivity
growth of highly developed OECD countries within the 1972–2000 time range. The
imposed lag structure implies that domestic innovations are, on average, more time-
consuming than technological catching-up, no matter if supported by domestic R&D
effort or not.

Thus, international technology diffusion might lead to a decrease in a country’s
distance to the world technology frontier. However, the stimulating impact of foreign
technology absorption on the productivity gap is likely to shrink over time because
the frontier keeps getting away. Furthermore, the international technology diffusion
channel is further strengthened by countries’ direct catch-up to the frontier, partially
supported by their domestic adaptive/imitative R&D.

Set aside estimation error and country fixed effects, the results obtained above can
be presented in the appealing form of a decomposition exercise for averaged data. It
turns out (Figure 1) that on average, domestic R&D output explains around 11% of
total OECD-wide productivity growth, pure catching-up effects capture around 16%,
R&D-supported catching-up effects capture around 31%, and technology diffusion ex-
plains around 42% of productivity growth. It should be emphasized though that R&D
effort has had a major contribution to the catching-up of lagging countries (cf. Griffith,
Redding and Van Reenen, 2004), as shown on Figure 2. Clearly, diffusion and catch-up
have thus been the major forces behind productivity growth, even though our sample
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contains only highly developed OECD countries, for which own R&D could be the
most important. The contribution of domestic R&D to productivity growth of each
particular country is relatively small, but it actually is quite sizeable even in arguably
small countries (in comparison to the US) such as Switzerland, Sweden, Finland, and
Austria. This result contrasts with earlier results of Comin (2004).

Figure 1: Decomposition of DEA-based productivity growth averaged
across OECD countries
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Source: Own calculations.

Given the large differences across OECD countries in terms of R&D effort made in
the period of 1972-2000 (cf. OECD, 2003; Madsen, 2008a,b) it comes as no surprise
that the contribution of each productivity growth component varies significantly across
countries in the sample, as shown in Figure 2.

Japan, Italy, Switzerland, Sweden, Australia, and the United States could be found
among the most efficiently innovating countries, in which domestic R&D output ex-
plained more than 14% of productivity growth. Domestic R&D was least productivity-
improving in Portugal, Belgium, Canada, the Netherlands, Norway, and Spain with
less than 6%.

Pure catching-up effects, on the other hand, have provided their strongest impacts
on productivity growth in Portugal, the Netherlands, and Norway, whereas least impact
has been observed in Switzerland, Canada, and the United States. This mirrors the
countries’ distance to the DEA-based technology frontier (cf. Growiec, 2008) – the
smaller the actual distance to cover, the smaller is the potential for catching-up effects.

R&D-induced catching-up effects were most effective in Canada and Belgium – i.e.,
two relatively small countries with relatively high in-house R&D outlays. Japan and
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Italy, on the other hand, have benefited least from this form of technological progress:
their R&D output has been mostly classified as direct, i.e. “frontier” R&D, and not
indirect “adaptive” or “imitative” R&D.

Technology diffusion has been a major force behind productivity growth in all
countries. Analogously to R&D-supported catching-up, its effects have been felt most
strongly in Canada and Belgium, and least strongly in Japan and Italy.

It was however Austria, Canada, Ireland and Norway which witnessed the highest
productivity growth rates in the sample, mainly due to the R&D enhanced technological
catch-up and technology diffusion.

Figure 2: DEA-based productivity growth breakdown across OECD coun-
tries
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Source: Own calculations.

It is also interesting to analyze the lags after which those total effects, described
in above paragraphs, take place. A decomposition of these total effects between all
consecutive lags has been presented in Figure 3.
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Figure 3: Decomposition of DEA-based productivity growth averaged
across OECD countries: lag structure
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Source: Own calculations.

4.2 Malmquist productivity index vs. TFP growth

Let us now compare our benchmark results, where we decomposed the Malmquist
productivity index, i.e., a DEA-based productivity growth measure, into components
attributable to R&D, PCU, R&DCU and DIFF , to an exercise based on the standard
measure of TFP growth.

The general model which we shall estimate in the current section takes the form:

∆Ait = βSCE
i +βRDR&Dit+βPCUPCUit+βRDCUR&DCUit+βDIFFDIFFit+εit, (13)

which differs from the model 8 only in the assumption about the dependent variable.
The estimation results are contained in Table 3. Again, all parameters have expected
signs and are strongly significant.
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Table 3: Estimation results.
Method: Generalized Least Squares

Characteristics: heteroskedastic with cross-sectional correlation
Dependent variable: TFP growth

Coefficients Standard t-stat Prob > |t|
Error

βRD 1.808 0.350 5.16 0.000
βPCU 0.094 0.018 5.10 0.000
βRDCU 0.020 0.006 3.57 0.000
βDIFF 0.020 0.005 4.17 0.000
const 0.992 0.005 221.08 0.000

Wald test χ2(7) = 64.340
Log likelihood=1627.004

Prob> χ2 = 0.000

Source: own computations.

In Figure 4, we present the decomposition of cross-country average TFP growth
into components attributable to R&D, PCU, R&DCU and DIFF .

Figure 4: Decomposition of TFP growth averaged across OECD countries
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Source: Own calculations.
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The results parallel the ones obtained for the Malmquist productivity index, but a
few striking similarities and differences should be mentioned. First of all, the impact
of domestic R&D on technological progress measured as TFP change is 11% which is
exactly the same number as before. Secondly, there is less room for catching-up with
the frontier if a Cobb–Douglas technology is imposed: this is reflected in lower shares of
both our measures of catching-up. Thirdly, this difference is captured by a respective
increase in the share of hi-tech import-based technology diffusion.

Turning to the question of the TFP growth breakdown across considered countries
(Figure 5), we see no qualitative differences between the two specifications: it is again
the case that countries which are the furthest from the world technology frontier benefit
most from catching-up but least from domestic R&D (Portugal, the Netherlands, Spain,
Norway; also Canada and Belgium, but for these two countries this is mostly R&D-
supported catching-up).

Figure 5: TFP growth breakdown across OECD countries
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It is also again true that Japan, Italy, Switzerland, Sweden, Australia and the
United States constitute the group of countries which benefited most from own R&D.
Again Japan is the country which benefited least from international technology dif-
fusion which might be due to geographic or other non-economic differences between
Japan and other countries in our sample.

In Figure 6, we present the breakdown of the TFP growth decomposition across the
temporal dimension: we assess the role of respective lagged values of each particular
explanatory variable.

Figure 6: Decomposition of TFP growth averaged across OECD countries:
lag structure
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21



4.3 Questions for further research

The conclusions resulting from the DEA-based decomposition and the econometric
exercise presented above enable us to formulate two additional issues to be raised in
further research on the subject.

1. The basic limitation of the research described above consists in employing highly
aggregated data. In particular, within this frame it is impossible to study sec-
toral reallocation effects, which as proved by Caselli and Tenreyro (2005) and
OECD (2003) might have largely contributed to the productivity growth of some
European economies.

2. R&D is a very broad economic category that encompasses inputs both from the
public and the business sector. The distinction between these two origins of R&D
efforts has not been made in the paper due to lack of consistent and reliable data
for the time slot selected in the research. Nevertheless, further research in this
field should possibly be extended so as to resolve this problem.

5 Conclusion

This paper decomposes productivity growth across highly developed OECD countries
in the period 1972-2000 into components attributable to domestic R&D output, pure
and R&D-driven catch-up effects, and international technology diffusion via imports
of hi-tech products.

The methodology employed in the current research consisted of decomposing pro-
ductivity growth into appropriately constructed measures of domestic R&D output,
technological catch-up and technology diffusion. Domestic R&D output has been de-
rived using the Schumpeterian specification taken from fully endogenous R&D-based
growth models while the catch up and technology diffusion terms are based upon ac-
cumulation of human-capital augmented and weighted sums of “technology flows”,
proxied by appropriate measures of technological distance between the source and des-
tination country in each pair.

To sum up, all of the variables considered had a positive and significant impact on
productivity growth of highly developed OECD countries within the period of 1972-
2000.

On average, own R&D output explains around 11% of this process, a pure catching-
up process – between 7% and 16%, an R&D-supported catching-up process – between
27% and 31%, and technology diffusion driven by hi-tech imports – between 42% and
55%.

The contribution of each productivity growth component varied significantly in the
sample, though. The most innovative countries – in terms of R&D output share in
the overall productivity growth – were Japan, Italy, Switzerland, Sweden, Australia,
and the United States. R&D output is however by no means the sole source of fast
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productivity growth. The front-runners in this field: Austria, Canada, Ireland and
Norway, achieved such high increments in their productivity only because they suc-
cessfully combined their efforts to simultaneously innovate new technologies and adopt
foreign ones.

6 Appendix

List of hi-tech products from OECD’s International Trade by Commodity Statistics
(number refers to the reference number in the database):

• 28: Inorganic chemicals, precious metal compound, isotope

• 29: organic chemicals

• 30: pharmaceutical products

• 37: Photographic or cinematographic goods

• 38: Miscellaneous chemical products

• 39: Plastics and articles thereof

• 85: Electrical, electronic equipment

• 86: Railway, tramway locomotives, rolling stock, equipment

• 87: Vehicles other than railway, tramway

• 88: Aircraft, spacecraft, and parts thereof

• 89: Ships, boats and other floating structures

• 90: Optical, photo, technical, medical, etc apparatus

• 91: Clocks and watches and parts thereof

• 92: Musical instruments, parts and accessories
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