

Endogenous Technology Choices and the

Dynamics of Wage Inequality

Jan Witajewski-Baltvilks

• An increase in supply of skills and college wage premium in most OECD countries.

- An increase in supply of skills and college wage premium in most OECD countries.
- A country that witnessed higher increase in number of college graduates than other countries saw:
 - fall in premium relative to the other countries immediately after increase in supply
 - increase in premium relative to the other countries a decade later

- skill-bias of the global technological paradigm
- at country level, firms can choose between more and less skill-biased production methods
- sharp increase in supply of skills incentivise firms to adopt more skill-biased production.

- response of skill premium to skills supply increase is smaller in the long-run than in the short-run.
- non-global mechanisms can explain part of the growth in the premium across OECD

College Premium and Relative Supply of College Skills in US • •

Figure: College premium and relative supply of college skills in US between 1939 and 1996

- theoretical model
- its calibration
- econometric exploration

Technology Choice and Skill Premium Dynamics

The Dynamic Model

Quantitative Analysis

- One product, many production methods.
- Production method *i* takes the form

$$F_{i} = \left[\left(A_{is}L_{s} \right)^{\sigma} + \left(A_{iu}L_{u} \right)^{\sigma} \right]^{\frac{1-\theta}{\sigma}} k^{\theta}$$

where L_s and L_u stand for skilled and unskilled labour inputs

• Each production method is characterized by a different pair (A_s, A_u) (unit productivities)

Available production methods

- The set of available production methods is determined by the global technology paradigm
- it is described by:

$$\frac{1}{\gamma}A_{is}^{\omega} + A_{iu}^{\omega} \le B \tag{1}$$

(2)

• supply of skills follows the process:

$$\log\left(\frac{L_s}{L_u}\right)\Big|_t = \log\left(\frac{L_s}{L_u}\right)\Big|_{t-1} + \mu + \xi_t$$

- Firm cannot switch the technology on the spot
- The firm's value function:

(3)

$$\log\left(\frac{w_s}{w_u}\right)\Big|_t = -(1-\sigma)\log\left(\frac{L_s}{L_u}\right)\Big|_t + \frac{\sigma}{\omega-\sigma}\log(\gamma)\Big|_{t-1} + \frac{\sigma}{\omega-\sigma}E_{t-1}\left[\log\left(\frac{L_s}{L_u}\right)\Big|_t\right]$$

- Equilibrium skill premium is driven by three forces:
 - diminishing returns to skills
 - skill-bias of technological paradigm
 - firm's expectation about today's supply of skills driving technology choice.

$$\log\left(\frac{w_s}{w_u}\right)\Big|_t = -(1-\sigma)\log\left(\frac{L_s}{L_u}\right)\Big|_t + \frac{\sigma}{\omega-\sigma}\log(\gamma)\Big|_{t-1} + \frac{\sigma}{\omega-\sigma}\left(\log\left(\frac{L_s}{L_u}\right)\Big|_{t-1} + \mu\right)$$

- Equilibrium skill premium is driven by three forces:
- diminishing returns to skills
- skill-bias of technological paradigm
- firm's expectation about today's supply of skills driving technology choice.

Technology Choice and Skill Premium Dynamics

The Dynamic Model

Quantitative Analysis

Identification

(4)

• The empirical model can be directly derived from the baseline model:

$$\log\left(\frac{w_s}{w_u}\right)\Big|_t = -(1-\sigma)\log\left(\frac{L_s}{L_u}\right)\Big|_t + \frac{\sigma}{\omega-\sigma}\log\left(\gamma\right)\Big|_{t-1} + \frac{\sigma}{\omega-\sigma}E_{t-1}\left[\log\left(\frac{L_s}{L_u}\right)\Big|_t\right]$$

- Two identification issues:
 - Separate the negative effect due to diminishing returns to skills and positive effect of adjusting technology choice.
 - Separate the effect of change in technological possibilities and the effect of adjusting technology choices.

• The empirical model is:

$$\triangle w_{it} = \alpha_1 \triangle l_{it} + \alpha_2 \triangle l_{it-5} + \alpha_3 \triangle l_{it-10} + \hat{d}_t + \triangle \varepsilon_{it}$$
(5)

• equivalent to

$$(\triangle w_{it} - \triangle w_t) = \alpha_1 (\triangle l_{it} - \triangle l_t) + \alpha_2 (\triangle l_{it-5} - \triangle l_{t-5}) + \alpha_3 (\triangle l_{it-10} - \triangle l_{t-10}) + (\triangle \varepsilon_{it} - \triangle \varepsilon_t)$$

• It isolates out the global factors (e.g. change in global technology paradigm).

- EU KLEMS (2008 release)
- 23 countries
- 1970 and 2005 (unbalanced).

		(1)	(2)	(3)
	skills supply growth {t}	-0.804***	-0.825***	-0.803***
	skills supply growth {t-5}	-0.255*	-0.224	-0.253*
	skills supply growth {t-10}	0.218**	0.217**	0.225**
•	d85		-0.006	
	d90		-0.03	
	d95		0.013	
	d00		0.013	
	year			0.001
	constant	0.167***	0.163***	-1.466

		(1)	(2)	(3)
	skills supply growth {t}	-0.804***	-0.825***	-0.803***
	skills supply growth {t-5}	-0.255*	-0.224	-0.253*
	skills supply growth {t-10}	0.218**	0.217**	0.225**
•	d85		-0.006	
	d90		-0.03	
	d95		0.013	
	d00		0.013	
	year			0.001
	constant	0.167***	0.163***	-1.466

		(1)	(2)	(3)
	skills supply growth {t}	-0.804***	-0.825***	-0.803***
	skills supply growth {t-5}	-0.255*	-0.224	-0.253*
	skills supply growth {t-10}	0.218**	0.217**	0.225**
•	d85		-0.006	
	d90		-0.030	
	d95		0.013	
	d00		0.013	
	year			0.001
	constant	0.167***	0.163***	-1.466

$$\Delta \log \left(\frac{w_s}{w_u}\right)_t = -0.82\Delta \log \left(\frac{L_s}{L_u}\right)\Big|_t + 0.11 + 0.22 \left(\Delta \log \left(\frac{L_s}{L_u}\right)\Big|_{t-10}\right)$$

- Estimation of the model a possibility result
- Are there other possibilities?

$(\triangle w_{it} - \triangle w_t) = \alpha_1 (\triangle l_{it} - \triangle l_t) + \alpha_2 (\triangle l_{it-10} - \triangle l_{t-10})$

$$+(\triangle \varepsilon_{it}-\triangle \varepsilon_t)$$

- Alternative explanations:
 - bias due to inclusion of endogenous variable discussion
 - serial correlation of the error term discussion
 - reverse causality discussion
 - alternative mechanisms: spillover discussion, endogenous adoption discussion

- Countries with faster growth of college graduates witness also faster growth of college premium ten years later.
- The most likely candidate to explain this pattern is the endogenous technology choice hypothesis:
 - At any point in time a firm has an option to switch between production methods.
 - After increase in supply of college graduates firms decided to switch to more skill-biased production methods.
- The estimation shows that this switch can account for 1/3 of the growth in skill premium in OECD countries.
- Future Work

- Contribution to the literature on skill-biased technology change (Acemoglu (2002); Aghion (2002); Goldin and Katz (2008))
 - Show that switch to skill-biased production method (that lead to increase in skill premium) can happen even without change in technological paradigm
- Contribution to the literature on Endogenous Technology Choice (Samuelson (1965), Caselli and Coleman (2007), Peri (2009))
 - Elaborate and estimate a dynamic model (prediction on dynamics of wage inequality; the model is based on Caselli and Coleman static model)
 - Present a piece of empirical evidence to support the hypothesis.
 - Set the microfoundation for the model: How R&D sector can generate variety of production methods.

• Suppose that the error term in skill premium regression is the IMA(1,1) process:

$$\Delta \varepsilon_{it} = \eta_{it} + \beta \eta_{it-10} \tag{7}$$

- Intuitively $\beta > 0$ implies that there is a process whose impact on skill premium is not completed after 10 years.
- Moreover the process cannot affect all countries equally (e.g. ICT), since this is controlled for.
- Candidates:
 - Loss of importance of trade unions
 - Globalization

		(2)	(4)
•	skills supply growth {t}	-0.825***	-0.822***
	skills supply growth {t-5}	-0.224	-0.222
	skills supply growth {t-10}	0.217**	0.213
	d85	-0.006	-0.007
	d90	-0.03	-0.028
	d95	0.013	0.015
	d00	0.013	0.013
	supply of skills (level)		
	change in union density		-0.034
	change in export to gdp ratio		-0.006
	constant	0.163***	0.161***

$$\triangle w_{it} = \alpha_1 \triangle l_{it} + \alpha_2 \triangle l_{it-10} + \hat{d}_t + \triangle \varepsilon_{it}$$

- Since $\triangle l_{it}$ may be correlated with the error term, all estimators are biased
- What is the sign of the bias for α_2 estimator?
- The assymptotic bias is

$$E\left[\hat{\alpha}_2-\alpha_2\right]=$$

$$= \frac{-1}{det} E\left[\left(\bigtriangleup l_{it} - \bigtriangleup l_t\right)\left(\bigtriangleup l_{it-10} - \bigtriangleup l_{t-10}\right)\right] E\left[\left(\bigtriangleup l_{it} - \bigtriangleup l_t\right)\left(\bigtriangleup \varepsilon_{it} - \bigtriangleup \varepsilon_t\right)\right]$$

• Therefore we would expect the sign of the bias to be negative.

- Skill supply will be correlated with future skill premium if workers predict future changes of skill premium.
- Workers would need to predict that growth of skill premium in their country will be higher than in other countries. They would need to know it 10 years ahead.
- If students in 1975 predict a sharp increase in skill premium in 1985 why students in 1970 would not be able to predict it?

- The higher is the number of workers the more productive they are.
- Some effect should be visible after 5 years disproved by data

- Countries with higher number of skilled workers want to adopt ICT faster than other countries.
- Growth of Skill premium would need to depend on the *level* of supply of skills.

	(5)	(6)
skills supply growth {t}	-0.793***	-0.786***
skills supply growth {t-5}	-0.242	-0.242
skills supply growth {t-10}	0.191**	0.183*
d85	-0.018	-0.021
d90	-0.034	-0.031
d95	-0.001	0.000
d00	0.006	0.003
supply of skills (level)	-0.041*	-0.042*
change in union density		-0.053
change in export to gdp ratio		0.004
constant	0.274***	0.272***
	skills supply growth {t} skills supply growth {t-5} skills supply growth {t-10} d85 d90 d95 d00 supply of skills (level) change in union density change in export to gdp ratio constant	$\begin{array}{c c} (5) \\ \hline \\ skills supply growth \{t\} & -0.793^{***} \\ skills supply growth \{t-5\} & -0.242 \\ skills supply growth \{t-10\} & 0.191^{**} \\ d85 & -0.018 \\ d90 & -0.034 \\ d90 & -0.034 \\ d95 & -0.001 \\ d00 & 0.006 \\ \\ supply of skills (level) & -0.041^{*} \\ change in union density \\ change in export to gdp ratio \\ constant & 0.274^{***} \\ \end{array}$

- The data shows that in recent year positive correlation between skill supply growth and skill premium growth decade later seems to vanish.
 - More labour mobility across countries?
 - Technological Change greases Technological Choice?
- Microfoundation and more evidence for the trade-off between more and less skill-biased technologies.

THANK YOU

WWW.IBS.ORG.PL

