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Abstract. We re-estimate the World Technology Frontier (WTF) non-
parametrically, using the Data Envelopment Analysis method, with a dataset
covering both OECD country-level and US state-level data on GDP per
worker and the stocks of physical capital, unskilled labor, and skilled labor.
The WTF 2000 is found to be spanned by a few US states such as Colorado,
Connecticut, Delaware, Nevada, Utah, and Washington, while the USA as
a whole falls markedly behind these leader states. The auxilliary use of
US state-level data adds extra precision to cross-country growth and lev-
els accounting exercises. We also calculate the “appropriate technology vs.
efficiency” decomposition, disentangling dynamic shifts of the WTF from
movements along the WTF. Our results indicate that previous estimates
of the WTF might have been downward biased and previous estimates of
technical efficiency might have been upward biased.
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1 Introduction

Is it possible to use production factors more effeciently than in the United States? If
your answer is based on aggregate cross-country data (cf. Kumar and Russell, 2002,
Henderson and Russell, 2005, Jerzmanowski, 2007, and Badunenko, Henderson and
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Zelenyuk, 2007), then it will be negative because the US level of per-worker produc-
tivity is high enough to span the world technology frontier.1 It follows that further
improvements in productivity could only be possible thanks to technological progress.
Yet, the US is a huge country with substantial internal heterogeneity; considering it a
single data point makes you lose a lot of precision in estimating the frontier. Indeed,
the folks in Delaware know well how to exceed the average US level of productivity,
and so do people in Connecticut, New York, California, and a bunch of other states.

The objective of this paper is therefore to revisit the economic debate on the World
Technology Frontier (WTF hereafter) and the question of appropriate technology adop-
tion with the use of US state-level data. By appending a US state-level dataset to an
international one, we obtain a great increase in precision of our WTF estimates while
remaining within the “cross-country” macro focus. Thanks to a finer approximation
of the WTF, we are also able to (i) improve the reliability of standard non-parametric
growth and development accounting exercises, (ii) resolve the ambiguity as to which
extent productivity changes represent shifts in the WTF or countries’ movement along
the WTF.

Following the lines of Caselli and Coleman (2006), we also distinguish between
skilled and unskilled labor. Allowing for imperfect substitutability between these two
production factors leads to a further refinement of the results provided in the estab-
lished literature.

In our analysis, we allow technologies from earlier years to span the WTF in the
given year alongside the current ones (cf. Henderson and Russell, 2005). Indeed, it
turns out that even some technologies used back in 1970 remain efficient in 2000 despite
substantial technological progress across these years, e.g. because they strongly rely
on unskilled labor which has been gradually disappearing in OECD countries in the
considered period.

The current study concentrates on highly developed OECD countries located in
Europe and North America (plus Australia and Japan), and sets aside all developing
economies. This makes it lose some precision in the estimation of the WTF in the
region of low capital and/or human capital endowments. On the other hand, this
also makes the results less vulnerable to the poor data quality argument (see e.g. the
discussion about Sierra Leone spanning the WTF in Kumar and Russell, 2002).

The principal novelty of this paper – to decompose the United States into its 50
constituent states – has a number of interesting features. First, US states are large
enough to be directly comparable to OECD countries in terms of productivity (the most
populous state, California, has a population exceeding 35 million which is more than
twice the size of the Netherlands, 16 million; the least populous state, Wyoming, has
around 0.5 million inhabitants which makes it comparable with Luxembourg or Cyprus
in terms of size). Second, a substantial number of US states is expected to span the

1Caselli and Coleman (2006) find however that several countries, notably Italy and Canada, are
more efficient in terms of productivity of unskilled labor than the US which makes the US fall behind
the frontier slightly.
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Table 1: GDP per worker across countries and US states, 2000. Units: US dollars,
constant prices (2000).

Rank State/Country GDP/worker Rank State/Country GDP/worker
1 Luxembourg 114448 37 Wisconsin 59048
2 Delaware 94154 38 Austria 58441
3 District of Columbia 89401 39 Missouri 58254
4 Connecticut 87498 40 Tennessee 57655
5 New York 85696 41 Netherlands 56691
6 New Jersey 83600 42 South Carolina 56615
7 Alaska 78902 43 Utah 56130
8 Massachusetts 77380 44 Kentucky 55321
9 California 75612 45 France 55286

10 Illinois 72162 46 Alabama 54666
11 Washington 72055 47 Switzerland 54306
12 Michigan 69065 48 Nebraska 54052
13 Georgia 68550 49 West Virginia 53933
14 Texas 68473 50 Kansas 53903
15 Virginia 68207 51 Iowa 53760
16 Maryland 67263 52 Maine 51721
17 Colorado 67170 53 Oklahoma 51353
18 USA 67079 54 South Dakota 51290
19 Nevada 67028 55 Arkansas 51212
20 Rhode Island 66369 56 Idaho 51196
21 Arizona 64829 57 Germany 51010
22 Pennsylvania 64418 58 Italy 50853
23 North Carolina 64072 59 Vermont 50687
24 New Hampshire 63927 60 Australia 50606
25 Norway 63909 61 Denmark 50448
26 Minnesota 63823 62 Canada 49816
27 Louisiana 63068 63 Mississippi 49638
28 Ohio 62742 64 UK 49225
29 Oregon 61410 65 Sweden 46544
30 Indiana 61021 66 North Dakota 45747
31 Wyoming 60911 67 Finland 45192
32 Florida 60828 68 Japan 44563
33 Hawaii 60723 69 Spain 44361
34 New Mexico 60107 70 Montana 44062
35 Belgium 59874 71 Portugal 34000
36 Ireland 59103 72 Greece 32070
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WTF once US country-level data are disaggregated: if it is already the US as a whole
– whose per-worker productivity is a weighted average of state-level productivities
– which spans the WTF, one can naturally expect the WTF to be spanned by some
above-average performing states. To see how US states fare when compared with OECD
countries, please refer to Table 1 which compares GDP per worker in 50+1 US states
and 21 OECD countries, measured in 2000. One can thus expect the WTF estimated
with the use of country-level data only to be markedly downward biased. Third, US
state-level data are of arguably high quality and are relatively easy to obtain.2

It must be noted that the decomposition procedure which we apply to the US could
also be carried forward to other countries (e.g. Germany consists of 16 Bundesländer

which are arguably heterogenous in terms of productivity; the UK is composed of Eng-
land, Scotland, Wales, and Northern Ireland; the European Union authorities decom-
pose the Member States into a total of 121 regions within the NUTS-1 classification,
etc.) and to lower levels of aggregation (e.g. counties, townships; sectoral categories
within the economy such as the NACE/ISIC sections, etc.). This procedure could even
be extended “to the absurd”, that is to the level of individual people or firms; one
crucial advantage of our approach is however that by sticking to macro-scale territorial
entities, we remain within the standard “productivity of nations” framework.

The text is structured as follows. In Section 2, we describe the methodology. In
Section 3, we present the sources of our data. Section 4 discusses the WTF and
its evolution from 1970 until 2000. Section 5 uses these results to decompose the
differences in productivity across nations into differences in technical efficiency and in
the accumulated factors of production. An auxilliary derivation of (factor-dependent)
TFP within a Cobb-Douglas production function specification allows us to address the
question of “appropriateness” of technology used by each country as well. Section 6
is devoted to decomposing country-level 1970–2000 changes in productivity into (i)
changes in technical efficiency, (ii) technological progress shifting the WTF, and (iii)
factor accumulation. Section 8 concludes.

2 Methodology

2.1 Data Envelopment Analysis (DEA)

The primary objective of this paper is to construct the best-practice production func-
tion nonparametrically, as a convex hull of production techniques (input–output config-
urations) currently used in the territorial units (countries/states) present in the data.
To this end, we will use the deterministic Data Envelopment Analysis (DEA) method
introduced to macroeonomics by Färe et al. (1994).

We will thus follow the lines of Kumar and Russell (2002), Henderson and Russell
(2005), Jerzmanowski (2007), and Badunenko, Henderson and Zelenyuk (2007). The

2Obtaining comparability of the two datasets is however a difficult issue. Please see the discussion
in Section 3.
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principal idea behind the use of DEA is to envelop all data points in the “smallest”
convex cone and to infer the production function as a fragment of the boundary of this
cone for which is output is maximized given inputs.

For each observation i, we will thus be able to provide the decomposition of output
yi:

yi = Eif(xi), (1)

into a product of the maximum attainable output given inputs y∗
i ≡ f(xi) and the

efficiency index Ei ∈ (0, 1]. In other words, the efficiency index Ei measures (vertical)
distance to the technology frontier, while the frontier itself is computed nonparametri-
cally as y∗

i = f(xi). It should be noted that the vector of inputs, xi, could in principle
be of any length n ∈ N, but if one distinguishes too many types of inputs then (i) the
DEA could run into numerical problems due to the “curse of dimensionality” (cf. Färe,
1994), and (ii) the efficiency levels could be overestimated due to too small a sample
size.

Formally, the (output-based) DEA method is a linear programming technique al-
lowing one find the efficiency index Ej for each unit j = 1, 2, ..., I in the sample such
that its reciprocal is maximized given a series of feasibility constraints:

max
{θj ,λ1,...,λI}

θj

s.t. θjyj ≤
I∑

i=1

λiyi,

I∑

i=1

λix1i ≤ x1j ,

I∑

i=1

λix2i ≤ x2j ,

... (2)
I∑

i=1

λixni ≤ xnj ,

λi ≥ 0, i = 1, 2, ..., I.

The efficiency index Ej is computed as the reciprocal of θi (that is, Ei = 1/θi).
Since the data contain a finite number of data points, one for each territorial unit

and each year, by construction the DEA–based production function will be piecewise
linear and its vertices will be the actually observed efficient input–output configura-
tions (i.e. non-dominated by any linear combination of other observed input–output
configurations).
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2.2 Advantages and limitations of the approach

The DEA is a deterministic, data-driven approach to deriving the production function
from observed input–output pairs. Its unquestionable strength lies in the fact that it
does not require to impose any particular functional form on the aggregate production
function (provided that it has constant returns to scale and satisfies the free-disposal
property), and provides testable predictions on its shape instead. Indeed, the usual
assumption of a Cobb–Douglas production function may lead to marked biases within
growth accounting or levels accounting exercises leading to overestimation of the role of
total factor productivity (TFP), as argued by Caselli (2005) and Jerzmanowski (2007).
As for the predicted shape of the production function, one obvious fact is that due to
the characteristics of the method, it will be piecewise linear for any finite data sample.
With reasonably large data samples, however, certain parametric forms could be tested
formally against the DEA-based nonparametric benchmark, such as the CES or the
Cobb–Douglas (presumably leading to a rejection of the latter).

There are important limitations to the DEA approach as well. First, its determin-
istic character makes it silent on the estimation precision of the aggregate production
function and of the predicted efficiency levels if inputs and outputs are subject to
stochastic shocks.

Second, the DEA is a biased estimator of the actual technological frontier. Cer-
tainly, even the most efficient units in the sample could possibly operate with some
extra efficiency: they are themselves aggregates of smaller economic units and must
therefore have some internal heterogeneity. Taking account of that, the frontier could
easily be shifted upwards; efficiency in nevertheless normalized to 100% for the most
efficient units in the sample. A bootstrap method due to Simar and Wilson (2000)
could help in this respect by allowing for corrections in the bias as well as for estimat-
ing confidence intervals for the actual efficiency levels and the technological frontier.
We leave this for further research.

Third, the DEA constructs the production function basing on the efficient data
points. This makes it naturally sensitive to outliers and measurement error. On the
one hand, outliers characterized by obvious errors are easily spotted because they spoil
the whole subsequent analysis. Systematic mismeasurement associated with some units
could be left unnoticed, however, if these units fall short of the frontier. The data have
been carefully checked, though, so that one can be confident that the risk of errors has
been minimized.

2.3 Implications for TFP

The nonparametric approach taken here can be easily compared to somewhat more
standard growth and development accounting exercises (e.g. Klenow and Rodriguez-
Clare, 1997; Hall and Jones, 1999; Caselli, 2005) which rest upon the Cobb-Douglas
production function assumption.

This is due to the following reasoning. Generically, all functions f(xi) could be
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written as

f(xi) = A(xi) · xα1

1i · ... · xαn

ni ,

n∑

k=1

αk = 1, (3)

where A(xi) captures “total factor productivity” (TFP). As long as f is not precisely
Cobb-Douglas, the A factor is a non-trivial function of inputs.

Now, denoting y∗
i as the best attainable (frontier) output given inputs – such that

yi = Eiy
∗
i – we can decompose actual output into (i) the efficiency level Ei, (ii) the

productivity differentials specific to the observed input configurations (the “appropriate
technology” factor, cf. Basu and Weil, 1998), and (iii) the Cobb-Douglas bundle of
factor endowments:

yi = Ei · A(xi) · xα1

1i · ... · xαn

ni . (4)

If by any chance, the actual production function is Cobb-Douglas then from the above
equation we would immediately obtain that TFP be equal to a constant A > 0; if
it is not, however, the “appropriate technology” factor A(xi) will co-vary with factor
endowments, pointing at the potential TFP gains accruing from a change in the factor
mix.

A large strand of contemporary macroeconomic literature aims at quantifying and
understanding TFP differences, with TFP computed as a residual value (Solow resid-
ual) from the Cobb-Douglas production function. As follows from the preceding dis-
cussion, this approach might however lead to a number of artifacts of the assumed
functional form. But even articles relaxing the Cobb-Douglas assumption and dealing
with different functional forms (cf. Basu and Weil, 1998; Acemoglu, 2003; Caselli and
Coleman, 2006) might encounter function misspecification problems. Indeed, the “ap-
propriate technology” factor A(xi) could capture not only a meaningful economic phe-
nomenon of optimal technology choice given available inputs (cf. Jones, 2005; Growiec,
2008), but also the error associated with a wrong specification of the production func-
tion. Given that in the DEA approach, we do not need any parametric assumptions on
the production function, we can judge the extent of the appropriate-technology factor
without convoluting it with misspecification error.

2.4 Implications for the direction of technical change

The DEA approach can also help draw important implications for the direction of
technical change. This exercise requires the best-practice production function to be
derived at (at least) two moments in time to allow intertemporal comparisons.

The procedure is the following. Having computed the “appropriate technology”
index A(xi) using the nonparametric production function as well as its Cobb-Douglas
counterpart for both moments in time, one analyzes the difference between the two as a
function of inputs. This helps identify the factor mixes for which the technology frontier
has been shifted most, and the regions for which it remained virtually unchanged.
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3 Data

The primary objective of the paper is to estimate the world technology frontier spanned
by the world’s most developed regions non-parametrically using the DEA method pre-
sented above. Our dataset covers 21 OECD countries: Australia, Austria, Belgium,
Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Japan, Luxem-
bourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom,
United States as well as 50 US states plus the District of Columbia:3 AL, AK, AZ,
AR, CA, CO, CT, DE, DC, FL, GA, HI, ID, IL, IN, IA, KS, KY, LA, ME, MD, MA,
MI, MN, MS, MO, MT, NE, NV, NH, NJ, NM, NY, NC, ND, OH, OK, OR, PA, RI,
SC, SD, TN, TX, UT, VT, VA, WA, WV, WI, WY.

We have however decided to drop Luxembourg and the DC from our analysis be-
cause of the strong indication that these entities’ productivity might be significantly
overestimated because of workers commuting from outside of the territory (such as
Belgium and France for Luxembourg, or Virginia and Maryland for DC). We have also
removed Germany in the period before its unification from our sample.

Furthermore, since the DEA method is extremely sensitive to outliers, we have also
decided to drop US states whose long-term average mining share in state GDP exceeds
10%. There is an indication that productivity of these states might be overestimated
since their GDP encompasses substantial resource rents which are not captured in the
estimated production function. These states are Alaska, Louisiana, New Mexico, West
Virginia, and Wyoming.4

The time span of our analysis is 1970–2000, and the estimations are run in 5-year
intervals. The crucial bottleneck here is the availability of schooling variables which are
only measured in 5-year intervals. Most other data were available in yearly frequency
and a longer period.

The production function has been estimated with the DEA method taking physical
capital K, unskilled labor LU and skilled labor LS as inputs. We have then decomposed
total output of each country i in each year t into the efficiency factor and its maximum
attainable output given inputs:

yit = Eitf(Kit, L
U
it , L

S
it). (5)

Unskilled and skilled labor are measured in “no-schooling equivalents”, indicating that
each worker’s labor input is weighted by her educational attainment. Following Caselli
and Coleman (2006), we have allowed unskilled and skilled labor to be imperfectly
substitutable. This requires us to split the overall level of human capital per worker
into “human capital within unskilled labor” and “within skilled labor”.5

3We do not consider U.S. overseas territories.
4The sparsely populated oil-producing Alaska is probably the most remarkable among these states.

With its mining share in GDP peaking at 50% in 1981, the state turned out to span the WTF any
time it entered the estimation procedure, subsequently lowering the efficiency factor in most other US
states by as much as 10-30 percentage points.

5Empirical evidence of imperfect substitutability between unskilled and skilled labor is provided
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The data we are using are set in per worker terms. This means that we abstract
from the issues of labor market participation which may result in additional per capita

productivity differences, and of the variation in hours worked per worker which means
that our analysis convolutes productivity differences with labor-leisure choice of the
employees: ceteris paribus, an increase in hours worked per worker will be reflected
by increases in “productivity” as we measure it even though technology as such is
unchanged. It is however difficult to find reliable and comparable data on hours worked
per capita both across OECD countries and US states which would date back at least
until 1970.

For international data on GDP and GDP per worker, we use the Penn World Table
6.2 (Heston, Summers, and Aten, 2006), available for 1960-2003. For state-level GDP
and GDP per worker, we use data from the Bureau of Economic Analysis, Regional
Accounts, available for 1963-2007. The unit of measurement is the PPP converted US
dollar under constant prices as of year 2000. Since, to our surprise, we have found
discrepancies up to 15% (in extreme cases) in the total number of workers employed
across the US in the two datasets, and since international data are given priority in the
analysis, the BEA data on GDP per worker have been adjusted to guarantee internal
coherence with the aggregate US data from the Penn World Tables.

The physical capital series have been constructed using the perpetual inventory
method described, among others, by Caselli (2005). We have taken country-level in-
vestment shares as well as government shares from the Penn World Tables 6.2. There
are two polar standpoints as for the role of government in capital accumulation: one
is that government spending is all consumption, and the other one is that it is all in-
vestment. We have taken an intermediate stance here, assuming that the government
invests the same share of its GDP share as the private economy does. Under this
assumption, the overall (private and public) investment share is s/(1 − g) where s is
the private investment share and g is the government share. Furthermore, following
Caselli (2005), we assumed an annual depreciation rate of 6%. For state-level govern-
ment shares, we compiled a dataset from primary sources at the US Census Bureau.
Since the period of available data is 1992-2006 only, we extrapolated government shares
backward in time using state-level averages and the long-run trend from the overall
US economy. Unfortunately, there are no data on state-level investment shares apart
from those computed by Turner, Tamura and Mulholland (2008) which are however not
publicly available. Knowing that this introduces substantial error, we have imputed
that state-level investment shares are equal to the US countrywide investment share.

Country-level human capital data have been taken from de la Fuente and Doménech
(2006) – D-D hereafter. The raw variables are shares of population aged 25 or above
having completed primary, some secondary, secondary, some tertiary, tertiary, or post-
graduate education. The considered dataset is of 5-year frequency only and it ends in
1995. Among all possible education attainment databases, the D-D dataset has been
given priority due to our trust in its superior quality. The original D-D series has been

by Pandey (2008).
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extrapolated forward to the year 2000 using Cohen and Soto (2007) schooling data as
a predictor for the trends. Neither Barro and Lee (2001) nor Cohen and Soto (2007)
data could be used directly for this purpose because neither of them is (even roughly)
in agreement with the D-D dataset – nor with each other – in the period where all
datasets offer data points.

US state-level human capital data have been taken from the National Priorities
Database. Here, the variables are shares of population aged 25 or above having com-
pleted less than high school, high school, some college, college, or having obtained the
Associate, Bachelor, or Master degree (the last category covering above-Master edu-
cation as well). These data are available for 1995-2006 only. We have extrapolated
this series backwards using US country-wide trends documented in D-D and state-level
differences in the period when the data were available. Cumulative years of schooling
at each level of education have been taken from D-D and supplemented with data from
country-specific web resources wherever necessary. The US state-level education at-
tainment data have also been adjusted to guarantee comparability with D-D data. We
have found a roughly steady surplus of 8 percentage points in the share of population
with less than high school completed in the National Priorities Database as compared
to D-D, compensated by a shortage of 5.3 pp. in high school graduates, and of 2.7
pp. in the “some college” category. We have thus added/subtracted these values from
the US state-level figures to guarantee coherence at the aggregate US level, keeping in
mind that this procedure could have introduced some additional error.

From the raw educational attainment data we have constructed the human capital
aggregates using the Mincerian exponential formula with a concave exponent following
Hall and Jones (1999), Bils and Klenow (2000) and Caselli (2005):

LU = eφ(s) for s < 12, LS = eφ(s) for s ≥ 12, (6)

where s represents years of schooling φ(s) is a concave piecewise linear function:

φ(s) =







0.134s s < 4,

0.134 · 4 + 0.101(s − 4) s ∈ [4, 8),

0.134 · 4 + 0.101 · 8 + 0.068(s − 8) s ≥ 8.

(7)

The overall human capital index can be computed as the sum of unskilled and skilled
labor: H = LU + LS. We have however allowed these two types of labor to be im-
perfectly substitutable. The perfect substitution case where only total human capital
matters is an interesting special case of our generalized formulation; the data don’t
support this assumption, however.

Special attention should be paid to the cutoff point of 12 years of schooling delin-
eating unskilled and skilled labor. It is secondary education which is usually completed
after 12 years of schooling (13 in some countries). We have thus assumed that everyone
who has not completed high school is counted as unskilled, and who has – as skilled.
This cutoff point seems adequate for OECD economies in our sample – which are usu-
ally technologically advanced and highly capitalized – though it might be set too high
if developed economies were to be considered as well (cf. Caselli and Coleman, 2006).
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4 The World Technology Frontier revisited: 1970-

2000

4.1 The World Technology Frontier in 2000

The production function constructed with the DEA method is piecewise linear in its
whole domain. The vertices of the convex feasible production set are the efficient
input–output pairs. For all observations, an efficiency level Eit is computed. Imposing
the Cobb-Douglas structure on this non-Cobb-Douglas production function makes us
back out the factor-dependent “appropriate technology” factor:

At(Kit, L
U
it , L

S
it) =

yit

EitK
α
it(L

U
it + LS

it)
1−α

, α =
1

3
. (8)

The TFP At has been depicted as a function of the K/H ratio for the year 2000
in Figure 1. The frontier has been estimated with both country-level and US state-
level data, but using observations from 2000 only. Figure 2 shows the same technology
frontier computed with the use of the whole 1970–2000 dataset. A remarkable difference
is that the second WTF, computed with markedly higher precision, is smoother. The
reason is that it has more data points spanning the frontier because a number of pre-
2000 technologies proved to be efficient in 2000 as well. Please note that the WTF itself
is a function of three variables but here only its projection on the K/H = K/(LU +LS)
axis is presented (following Jerzmanowski, 2007).

The WTF in 2000, estimated with 1970–2000 data, is spanned by the following
efficient technologies (Table 2).

One result might be particularly surprising here: the efficiency of old (but not new)
technologies from Portugal, Spain, and Nebraska. This is due to the fact that Portugal
and Spain in 1970–1980 relied heavily on unskilled labor for production, at the same
time being relatively undercapitalized and undereducated. In fact, no country was able
to use unskilled labor so efficiently later – they all produced more but this was due to
larger factor inputs. Similarly, Nebraska in 1970–1975 was relatively undercapitalized
(at least for US standards) but produced a reasonably high output nevertheless. The
old Nebraskan technology is thus efficient, but only for sufficiently low capital–skilled
labor ratios.

4.2 Non-neutral technical change

It is worthwhile to show how the WTF evolved during the 30 years between 1970 and
2000. This can be seen in Figure 3. Although technological progress has shifted the
WTF in its (almost)6 whole domain, two effects must be noted: (i) technical change

6Remember that Figure 3 does not capture the whole three-dimensional domain of At(Kit, L
U
it
, LS

it
).

The technologies used in 1970 in Colorado, Florida, Nebraska, Japan, Netherlands, Portugal, and
Spain remained efficient until 2000 but these countries or states ceased to use them because they
accumulated more production factors across the years.
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Figure 1: The 2000 World Technology Frontier estimated with 2000 data only. Aster-
isks denote actual observations, the solid line captures efficient technologies.
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Figure 2: The 2000 World Technology Frontier estimated with 1970–2000 data. Aster-
isks denote actual observations, the solid line captures efficient technologies.
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Table 2: Efficient technologies in 2000.

State / Country Year State / Country Year
Colorado 1970 Texas 1980
Florida 1970 Portugal 1980
Nebraska 1970 Colorado 1985
Japan 1970 Colorado 1990
Netherlands 1970 Nevada 1995
Portugal 1970 Utah 1995
Spain 1970 Colorado 2000
Colorado 1975 Connecticut 2000
Nebraska 1975 Delaware 2000
Portugal 1975 Nevada 2000
Spain 1975 Utah 2000
Colorado 1980 Washington 2000
Nevada 1980

has been strongest in the area where the K/H ratio is around 25-35, which is “middle
range” as for 2000; (ii) continued physical capital accumulation extended the WTF
into the range of larger K/H ratios, extending 40. For lower physical/human capital
ratios, technical change was less pronounced and for K/H ≈ 7 (which was the case
for Portugal and Spain in 1970), there has been hardly any technical change at all (at
least in our data; it is however likely that some technical change for such a low K/H
ratio might have occured in developing countries).

It is also interesting to trace the evolution of technical efficiency Eit across the
years 1970–2000. This can be seen in Table 3. For each country, there is substantial
temporal variability in this variable which could be explained by the arrivals of new
frontier technologies in the US which affected the relative ranking of each country’s
technology in an non-uniform way. Some trends are clearly visible, though: technical
efficiency in Australia, Canada, Netherlands, Sweden, and Switzerland (since 1980)
has been steadily declining throughout the period, indicating that losses in technical
efficiency might have been the primary force behind weaker growth performance of these
countries as compared to the US. In Ireland, on the other hand, technical efficiency
was declining until its minimum in 1985 but quickly increased again since that year.

Another observation is that many European countries, as well as Japan, have lost on
technical efficiency (that is, relative to certain U.S. states) in the last considered decade,
1990–2000. One possible explanation for this result is the surge in ICT investment
observed in the US in the 1990’s, culminating in the “internet bubble” which burst in
2000/01, and which was much less pronounced in European countries such as Germany,
France or Italy (Timmer, Ypma, and van Ark, 2003) and Japan. That is to say,
GDP per worker in the US might have actually been temporarily overshooting the
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Figure 3: The direction of technical change, 1970–2000. Asterisks denote 2000-efficient
technologies given factor endowments.

fundamentals in 2000. Thus, the downfall in technical efficiency in 2000 in several
countries might have been a transitory phenomenon. More recent data are required to
verify this conjecture, though.

In 3 we report countries’ efficiency levels only but it refers to the WTF spanned by
individual US states as well.7 One caveat when reading this table is that the precision
of estimation of WTF is progressively increasing when we move from 1970 to 2000. For
this reason, e.g. the sudden drop of efficiency in Japan between 1970 and 1975 might
not be a meaningful phenomenon but an artifact of Japanese efficiency being sharply
overestimated in 1970 (due to data scarcity in earlier years).

4.3 Have previous WTF estimates been downward biased?

As announced in the introduction, one of the advantages of using US state-level data
for estimating the World Technology Frontier is that more precision is gained thanks
to this step. Not only is estimation error reduced in this process, but also is the
magnitude of the bias revealed: it turns out that within the U.S., there has been a lot
more technological know-how than aggregate data show.

As is visible in Figure 4, the WTF estimate is much lower if only country-level data
are used in the estimation procedure. Thanks to US state-level data, the estimate is

7The detailed data on state-level efficiency factors and optimal technology choice are available from
the author upon request.
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Table 3: Changes in technical efficiency Eit across time.

Country 1970 1975 1980 1985 1990 1995 2000
Australia 0.8137 0.7690 0.7445 0.7491 0.6874 0.6773 0.6247
Austria 0.7638 0.7646 0.7940 0.7982 0.7949 0.7431 0.6549
Belgium 0.8693 0.8652 0.9020 0.8738 0.9140 0.8629 0.7484
Canada 0.8367 0.8360 0.7588 0.7260 0.6667 0.6212 0.6446
Denmark 0.7729 0.6880 0.7071 0.7351 0.7029 0.7226 0.6381
Finland 0.7475 0.7092 0.6851 0.7023 0.7153 0.5871 0.5795
France 0.8518 0.7977 0.8245 0.8281 0.8424 0.7607 0.6346
Germany n/a n/a n/a n/a 0.6256 0.6229 0.5487
Greece 0.8020 0.7520 0.7819 0.7045 0.6553 0.5870 0.5664
Ireland 0.9187 0.8107 0.7741 0.7143 0.7706 0.8233 0.9481
Italy 0.9291 0.8962 1.0000 0.9656 0.9827 0.9025 0.7564
Japan 1.0000 0.7124 0.6710 0.6746 0.7123 0.6458 0.4946
Netherlands 1.0000 0.9860 0.9767 0.8471 0.7993 0.7438 0.6326
Norway 0.7466 0.7985 0.8674 0.8957 0.8544 0.8658 0.8074
Portugal 1.0000 1.0000 1.0000 0.8391 0.9989 0.9276 0.8863
Spain 1.0000 1.0000 0.9562 0.8938 0.9455 0.8073 0.7242
Sweden 0.7889 0.7642 0.7343 0.7269 0.7269 0.6541 0.5759
Switzerland 0.8935 0.8736 0.9639 0.8573 0.8108 0.7056 0.5768
UK 0.8128 0.7905 0.7372 0.7617 0.7876 0.7486 0.7195
USA 0.9339 0.9135 0.9131 0.9078 0.8460 0.8359 0.8103
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improved and the downward bias is reduced: for many countries it turns out that their
efficiency is lower and their potential output is higher.
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Figure 4: World Technology Frontier in 2000, estimated using countries only data as
well as our dataset of both countries and US states.

The main corollary from this analysis is that the downward bias in WTF estimates
using country-level data only can be quite substantial, going up to 25% of estimated
potential TFP. For 19 OECD countries, efficiencies estimated with and without the
auxilliary use of US state-level data are shown in Table 4. The maximum observed
difference is 35 percentage points in the case of Canada.

4.4 Optimal technology choice

If knowing a country’s efficiency level is the first step, the natural second step would be
to learn about its optimal technology choice given its inputs, able to raise its efficiency
to one. The DEA method provides the answer to this question immediately: the
optimal technology is a convex combination of technologies used by the efficient units
in the sample, and the share of each i-th technology is its λi multiplier in Eq. (3). We
have summarized these findings in Table 5.

One striking feature of Table 5 is that it indicates that most countries could gain
efficiency by adopting the Delaware 2000 technology (either fully, as is the case for
Germany and Switzerland, or partly). When a given country has a relatively lower
capital stock, it could also benefit from the use of the Netherlands 1970, Spain 1970–
1975, or Nevada 2000 technology.
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Table 4: Efficiency levels in 2000 estimated with and without the use of US state-level
data.

Country With US states No US states
Australia 0.6247 0.7823
Austria 0.6549 0.8917
Belgium 0.7484 0.9415
Canada 0.6446 1.0000
Denmark 0.6381 0.8220
Finland 0.5795 0.7253
France 0.6346 0.8522
Germany 0.5487 0.7605
Greece 0.5664 0.6416
Ireland 0.9481 1.0000
Italy 0.7564 0.9082
Japan 0.4946 0.6785
Netherlands 0.6326 0.8649
Norway 0.8074 1.0000
Portugal 0.8863 0.9789
Spain 0.7242 0.8235
Sweden 0.5759 0.7644
Switzerland 0.5768 0.8139
UK 0.7195 0.8610
USA 0.8103 1.0000

5 Decomposing the distance between OECD coun-

tries and the U.S., 2000

5.1 Development accounting

The non-parametric production frontier approach is very useful for the purposes of
development accounting. The ratio of GDP per worker between two countries (here,
between each particular OECD country and the U.S.) can be easily decomposed into
a product of (i) the efficiency ratio, and (ii) differences in potential output attributed
to differences in the endowment of each separate factor of production.

The latter group of factors cannot be determined uniquely. The reason is that
when we assess the impact on output of differences in one factor holding other factors
constant, we can hold them constant at different levels: either at US levels, or country’s
levels, or a mixture of the two. For two factors of production (say, physical capital
K and human capital H), the situation is relatively simple. In such case, the best
idea would be to decompose the ratio of GDP per worker between country C and USA
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Table 5: OECD Countries’ optimal technology choice, 2000.

Country Primary tech. Share Secondary tech. Share
Australia Delaware 2000 0.5234 Nevada 2000 0.4416
Austria Delaware 2000 0.9069 Netherlands 1970 0.0931
Belgium Delaware 2000 0.7326 Netherlands 1970 0.2674
Canada Nevada 2000 0.5106 Delaware 2000 0.3773
Denmark Delaware 2000 0.7363 Netherlands 1970 0.1533
Finland Delaware 2000 0.6955 Netherlands 1970 0.2990
France Delaware 2000 0.8683 Netherlands 1970 0.1248
Germany Delaware 2000 1.0000
Greece Nevada 2000 0.7219 Portugal 1970 0.2021
Ireland Nevada 2000 0.4453 Spain 1970 0.2848
Italy Netherlands 1970 0.5088 Delaware 2000 0.4912
Japan Delaware 2000 0.9233 Netherlands 1970 0.0767
Netherlands Delaware 2000 0.9218 Spain 1975 0.0394
Norway Delaware 2000 0.7173 Netherlands 1970 0.2787
Portugal Spain 1975 0.5664 Portugal 1980 0.2739
Spain Delaware 2000 0.4644 Spain 1975 0.4432
Sweden Delaware 2000 0.6905 Nevada 2000 0.1926
Switzerland Delaware 2000 1.0000
UK Nevada 2000 0.8109 Delaware 2000 0.1351
USA Delaware 2000 0.5790 Colorado 2000 0.3154
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(denoted as U) according to the “Fisher–ideal” decomposition (cf. Henderson and
Russell, 2005):

yC(KC , HC

yU(KU , HU)
=
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EU
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With three factors of production which we have in our analysis, the situation gets
more complex: there is no single “other factor” which should be fixed at a C or U level
but there are two “other factors” which may be fixed at (C, C), (C, U), (U, C) or (U, U)
levels. After a fair amount of algebra, the “Fisher-ideal” decomposition for such a case
is found to satisfy the following:
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Please note that in each of the fractions indicated above, the numerator and denomi-
nator differ by a single variable only, being the variable whose contribution to the total
GDP ratio we are about to measure.

The results of a numerical computation of decomposition (10) are presented in
Table 6. “H diff” is the total impact of human capital differences, being the product
of LU diff and LS diff.

5.2 Efficiency vs “appropriate technology”

Another advantage of the non-parametric frontier estimation method is that it allows
one to decompose the GDP ratio into the efficiency differential, the factor endow-
ments differential, and the “appropriate technology” ratio capturing the differences in

19



Table 6: Decomposition of the distance between a given OECD country and the US in
2000.

Country GDP ratio Efficiency K diff LU diff LS diff H diff
Australia 0.7544 0.7709 0.9763 1.0179 0.9847 1.0023
Austria 0.8712 0.8082 1.0606 1.0704 0.9495 1.0163
Belgium 0.8926 0.9235 1.0406 1.1296 0.8222 0.9288
Canada 0.7426 0.7955 0.9392 0.9940 1.0000 0.9940
Denmark 0.7521 0.7874 1.0142 1.1193 0.8414 0.9418
Finland 0.6737 0.7152 1.0230 1.1354 0.8110 0.9208
France 0.8242 0.7831 1.0490 1.0775 0.9310 1.0032
Germany 0.7605 0.6771 1.0779 1.0418 1.0001 1.0419
Greece 0.4781 0.6989 0.7581 1.1177 0.8073 0.9023
Ireland 0.8811 1.1700 0.8564 1.1249 0.7817 0.8793
Italy 0.7581 0.9334 1.0090 1.2324 0.6531 0.8049
Japan 0.6643 0.6104 1.0626 1.0676 0.9594 1.0243
Netherlands 0.8451 0.7807 1.0549 1.0640 0.9645 1.0262
Norway 0.9527 0.9964 1.0403 1.1352 0.8097 0.9191
Portugal 0.5069 1.0938 0.8603 1.9676 0.2738 0.5387
Spain 0.6613 0.8937 0.9265 1.2656 0.6311 0.7987
Sweden 0.6939 0.7106 0.9928 1.0619 0.9261 0.9835
Switzerland 0.8096 0.7118 1.0820 1.0537 0.9976 1.0512
UK 0.7338 0.8879 0.8631 1.0341 0.9261 0.9576

maximum attainable production given factor endowments. Backing out the “appropri-
ate technology” part requires an auxilliary assumption of a Cobb–Douglas production
function, though. If the Cobb–Douglas assumption is fundamentally wrong then the
results of this exercise will be consequently wrong as well.

Referring to the Eq. (4), and adding the assumption of perfect substitutability
between skilled and unskilled labor to attain comparability to the established literature,
the efficiency vs. appropriate technology decomposition can be written down as:
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where α = 1/3.
The results of such an exercise are presented in Table 7, from which we learn that

under the Cobb-Douglas assumption, the role of factor endowments is much smaller
than it was in the non-parametric estimates (K diff and H diff are now markedly closer
to unity), and a significant fraction of the productivity differential which was previously
attributable to factor endowments is now shifted to the “appropriate technology” ratio,
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Table 7: Decomposition based on the Cobb-Douglas assumption: efficiency vs. “ap-
propriate technology”.

Country GDP ratio Effic. Techn. K diff H diff
Australia 0.7544 0.7709 0.9640 0.9857 1.0299
Austria 0.8712 0.8082 0.9243 1.0654 1.0947
Belgium 0.8926 0.9235 0.8051 1.0691 1.1229
Canada 0.7426 0.7955 0.9509 0.9665 1.0157
Denmark 0.7521 0.7874 0.9803 1.0148 0.9601
Finland 0.6737 0.7152 0.9136 1.0255 1.0055
France 0.8242 0.7831 0.9899 1.0411 1.0212
Germany 0.7605 0.6771 0.9461 1.0478 1.1328
Greece 0.4781 0.6989 0.7734 0.8520 1.0381
Ireland 0.8811 1.1700 0.8627 0.9022 0.9675
Italy 0.7581 0.9334 0.7841 1.0086 1.0270
Japan 0.6643 0.6104 1.0210 1.0612 1.0046
Netherlands 0.8451 0.7807 0.9560 1.0417 1.0871
Norway 0.9527 0.9964 0.9057 1.0965 0.9628
Portugal 0.5069 1.0938 0.6950 0.8562 0.7788
Spain 0.6613 0.8937 0.8061 0.9366 0.9801
Sweden 0.6939 0.7106 1.0256 0.9957 0.9562
Switzerland 0.8096 0.7118 0.9752 1.1019 1.0584
UK 0.7338 0.8879 0.9262 0.9166 0.9736
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or factor-dependent TFP. Indeed, for countries like Belgium or Italy, inappropriateness
of technology explains most of the productivity differential. There are also important
counterexamples, however: Japan and Sweden could actually produce more than the
US given their factor endowments (their potential TFP exceeds the US one) but they
don’t because of markedly lower technical efficiency.

6 Decomposing GDP growth, 1970–2000

6.1 Growth accounting

Analogously to the development accounting exercise described above, we have also
conducted a growth accounting exercise where we decomposed the total 1970–2000
increase in GDP per worker into the impacts of (i) change in efficiency relative to the
WTF, (ii) technological progress at the WTF, (iii) factor accumulation.

As compared to development accounting, there is one additional factor which ought
to be disentangled here: technological progress at the frontier which pushes the WTF
forward so that potential productivity is increased. Formally, with three factors of pro-
duction, K, LU , LS, the “Fisher-ideal” (cf. Henderson and Russell, 2005) decomposition
of the 2000/1970 productivity ratio is the following (denoting s = 1970, n = 2000):
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The decomposition of GDP growth defined by Eq. (12) singles out the dynamic changes
in efficiency, shifts in the technology frontier given factor endowments, and factor accu-
mulation holding the technological frontier fixed. Furthermore, each of the two factors
making up the “factor accumulation” part should be further decomposed as in Eq.
(10) so that the contribution of each particular factor’s accumulation to productivity
growth is properly accounted for.

Table 8 presents the growth accounting exercise for OECD countries. Once again,
the WTF has been estimated with the use of US state-level data as well, but the
decompositions of state-level productivity growth are not presented here. The numbers
included in Table 8 (and in all further growth accounting exercises) are 2000/1970
ratios of respective variables, in line with the definitions described in Eq. (12). They
can easily be transformed into annual growth rates (in %) by applying the transform
x 7→ ( 30

√
x − 1) · 100%.

The remarkable growth experience of Ireland whose GDP per worker has almost
tripled during the considered 30 years, turns out to be mostly due to rapid capital
accumulation and the ability to draw from the pool of worldwide technological change.
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The same factors have also been crucial for Japan in the considered period, but the
overall Japanese performance was somewhat less striking than the Irish one due to a
simultaneous marked downfall in technical efficiency. An important group of countries
encompasses the Netherlands, Sweden, Finland, and Norway which have obtained re-
markable gains in productivity due to improvements in the level of schooling. The
positive impact of technological progress has been felt most strongly in Switzerland
and the USA while it was least pronounced in Portugal and Greece which were rel-
atively too undercapitalized and undereducated to take full advantage of the newest
developments.

Table 8: Decomposition of the productivity increase in the 1970–2000 period.

Country GDP Effic. Techn. K diff LU diff LS diff H diff
Australia 1.4896 0.7678 1.3935 1.1710 0.9227 1.2885 1.1890
Austria 1.9269 0.8575 1.4597 1.3070 0.9942 1.1846 1.1778
Belgium 1.7902 0.8609 1.3714 1.1884 0.9932 1.2846 1.2759
Canada 1.4426 0.7704 1.4163 1.2588 0.6149 1.7080 1.0503
Denmark 1.4687 0.8256 1.3857 1.1518 0.9861 1.1303 1.1146
Finland 1.8019 0.7753 1.3305 1.1165 0.7220 2.1671 1.5645
France 1.7534 0.7450 1.4171 1.2488 0.7259 1.8320 1.3299
Greece 1.4765 0.7062 1.1909 1.3817 0.9536 1.3325 1.2707
Ireland 2.9088 1.0320 1.2112 2.5160 0.6818 1.3565 0.9249
Italy 1.6992 0.8140 1.2356 1.0840 0.9520 1.6369 1.5584
Japan 1.9971 0.4946 1.4218 2.5008 0.6507 1.7452 1.1356
Netherlands 1.3746 0.6326 1.3326 1.0418 0.4924 3.1786 1.5652
Norway 1.9835 1.0814 1.3542 1.0633 0.6857 1.8577 1.2737
Portugal 1.9022 0.8863 1.1733 1.6664 0.6588 1.6664 1.0977
Spain 1.7849 0.7242 1.2073 1.3288 0.9340 1.6448 1.5363
Sweden 1.3726 0.7300 1.3881 1.0688 0.5015 2.5274 1.2674
Switzerland 1.2044 0.6455 1.6201 1.0530 0.9680 1.1297 1.0936
UK 1.7615 0.8852 1.3124 1.3184 0.8858 1.2983 1.1501
USA 1.6486 0.8677 1.5633 1.2758 0.6247 1.5249 0.9526

6.2 Shifts of the WTF vs. movements along the WTF

Making the auxilliary Cobb-Douglas production function assumption, the 2000/1970
productivity ratio can be decomposed into contributions attributable to (i) efficiency
changes (i.e. changes in distance to the WTF), (ii) technological progress shifting the
WTF, (iii) changes in factor-specific TFP given a certain WTF (i.e. movements along
the frontier), and (iv) factor accumulation. Please note that in principle, the frontier
TFP is time-dependent and may increase thanks to new technological developments
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– which complicates the current analysis. Formally, the “Fisher-ideal” decomposition,
taking full account of technological change, is obtained from the following formula:
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The decomposition summarized in Eq. (13) is, to our knowledge, novel to the lit-

erature. The novelty here is that we are able to disentangle three characteristics of
technological change: efficiency, shifts of the WTF, and movements along the WTF.
In previous contributions such as Kumar and Russell (2002) or Jerzmanowski (2007),
the last two factors were lumped together. We believe however that they should be
separated, because they describe two conceptually different phenomena – of (presum-
ably R&D-driven) technological change at the frontier, and of getting access to better
(already known) technologies applicable to the country’s new factor mix.

The results of this decomposition have been presented in Table 9. It is clear from
this table that shifts of the WTF due to technological progress have been the pri-
mary contribution to GDP growth in all considered OECD countries but Portugal
(and possibly Greece). For a few interesting cases, movements along the frontier have
constituted an important contribution as well: most notably, Ireland and Portugal, and
to a slightly lesser extent, Spain, Japan, and Greece. Along-the-frontier movements
are highly correlated with capital accumulation: both factors are strongest in the same
group of countries, covering Japan, Ireland, Portugal, and Spain.

One feature of these results is that the contributions of WTF shifts and movements
along the WTF are strongly negatively correlated.8 Indeed, the raw correlation co-
efficient between these two contributions (transformed into annualized growth rates)
is -0.87. One possible interpretation of this fact could be that there is really just a
single factor “technological change” that matters, and decomposing it further is a void
exercise.

On the other hand, since all the factor definitions put forward in Eq. (13) are
naturally interpretable – these factors indeed measure (i) shifts in the frontier TFP
holding factor endowments constant and (ii) changes in factor-dependent TFP holding
the WTF constant – one can argue that we have actually uncovered a more general
regularity here.

The above mentioned strong negative correlation between the “WTF shift” and
the “movement along WTF” factors suggests an approximate “either–or” property:
TFP in a country can grow either due to the worldwide technical change increasing

8I am grateful to Maciej Bukowski for pointing out this regularity.
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Table 9: Decomposition of the productivity increase in the 1970–2000 period. Effi-
ciency, shifts of the World Technology Frontier, and movements along the WTF.

Country GDP ratio Effic. WTF shift Along WTF K diff H diff
Australia 1.4896 0.8276 1.4314 0.9495 1.1699 1.1319
Austria 1.9269 0.8974 1.5078 0.9654 1.3048 1.1305
Belgium 1.7902 0.8680 1.5503 0.9057 1.2705 1.1561
Canada 1.4426 0.7905 1.3638 1.0067 1.1968 1.1105
Denmark 1.4687 0.7984 1.5043 1.0030 1.1731 1.0393
Finland 1.8019 0.8437 1.4444 0.9592 1.2105 1.2734
France 1.7534 0.7970 1.4880 0.9882 1.2843 1.1650
Greece 1.4765 0.7006 1.1977 1.1453 1.2176 1.2619
Ireland 2.9088 0.9631 1.1757 1.5634 1.4202 1.1569
Italy 1.6992 0.8688 1.4732 0.8980 1.1813 1.2515
Japan 1.9971 0.5300 1.4179 1.2990 1.5943 1.2834
Netherlands 1.3746 0.7561 1.6562 0.8597 1.0885 1.1730
Norway 1.9835 1.1016 1.5698 0.9508 1.2051 1.0011
Portugal 1.9022 0.7286 1.0941 1.4893 1.4401 1.1126
Spain 1.7849 0.6260 1.2776 1.2479 1.3645 1.3107
Sweden 1.3726 0.8067 1.4851 0.9286 1.1147 1.1068
Switzerland 1.2044 0.6455 1.6922 0.8559 1.1427 1.1273
UK 1.7615 0.9247 1.2729 1.1120 1.1995 1.1220
USA 1.6486 0.8570 1.4268 1.0345 1.2244 1.0645

TFP at the frontier, or due to movements along the frontier, but not due to both
simultaneously. This property relates to the three following facts:

• The maximum attainable (frontier) TFP level depends positively on the amount
of available physical capital (confirming previous findings of Kumar and Rus-
sell, 2002; Henderson and Russell, 2005, etc.). Accumulating physical capital is
therefore associated with moving along the WTF – from low values where the
frontier TFP is also low, to high values where the frontier TFP is high. In our
current sample, the correlation between the capital accumulation factor and the
“movement along WTF” factor is +0.80.

• Once the differences in technical efficiency are filtered away, there appears a
clear real convergence pattern: countries which were relatively undercapitalized
initially were accumulating capital faster. This implies large technological bene-
fits due to the movements along the WTF in these countries, but not in countries
which were highly capitalized initially. In result, the correlation coefficient be-
tween the capital accumulation factor and the aggregate “technical change factor”
(WTF shift × movement along WTF) is as high as +0.83.
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• Not only is the TFP higher in the range of high capital levels, but it is also grow-
ing faster over time in that range. Therefore, countries which had an abundance
of production factors in the beginning, were more able to reap the benefits of
technological progress at the WTF than countries which lacked them. On the
other hand, due to the real convergence mechanism described above, these coun-
tries would accumulate capital slower than the catching-up countries, and thus
gain less from capital deepening. The correlation coefficient between the capital
accumulation factor and the “WTF shift” factor is -0.53, somewhat confirming
this intuition.

Summarizing, we view the strong negative correlation result between the “WTF
shift” and “movement along WTF” factors as an outcome of an interplay of real con-
vergence (set aside technical efficiency), the fact that TFP is increasing in the country’s
capital endowment, and that technological progress at the frontier is realized mostly
for high capital levels.

Actually, countries could grow thanks to both shifts of the WTF and movements
along the WTF, but this would require that at least one of the three above regularities
would be violated. We do not see such departures in our data, but they could be found
for different sets of countries (including less developed economies), or for different
periods of time. We leave this question open for further research.

6.3 Substitutability between unskilled and skilled labor

How much precision have we gained by allowing skilled and unskilled labor to be
imperfectly substitutable? If the technology frontier, estimated with aggregate human
capital data, was approximately overlapping with the frontier estimated with skilled
and unskilled labor separately, then there would be no gain. On the other hand, the
further away from each other are these two estimates, the stronger is the indication of
limited substitutability between both types of labor.

In Table 10, we have compared the estimates of technical efficiency (distance to
the WTF) obtained with the use of disaggregated unskilled and skilled labor variables
to their counterparts computed under the assumption of a homogenous human capital
stock (H = LU + LS).

One lesson here is that the benchmark (LU , LS) efficiency estimates are higher or
equal than the simpler H–only estimates, and that the benchmark potential TFP esti-
mates are lower or equal than their H–only counterparts, indicating that aggregating
human capital to a homogenous stock might lead to an overestimation of potential
productivity in all non-frontier countries and states. The extreme cases are the Italy
and Portugal, where the efficiency factor increases by 16 percentage points, and poten-
tial TFP decreases by 0.9–1.2 when human capital is disaggregated. This is because
a relatively large fraction of the Italian and Portuguese workforce is undereducated
(less than high school) but their aggregate human capital measures are nevertheless
arguably high there (e.g. there are also reasonably large shares of university gradu-

26



Table 10: Estimated efficiencies and potential TFP (under the Cobb-Douglas assump-
tion). Homogenous vs. heterogenous human capital.

Country Effic. LU , LS Effic. H TFP, LU , LS TFP, H
Australia 0.6247 0.6218 5.3817 5.4067
Austria 0.6549 0.6207 5.1601 5.4448
Belgium 0.7484 0.6359 4.4950 5.2898
Canada 0.6446 0.6379 5.3090 5.3647
Denmark 0.6381 0.5831 5.4731 5.9889
Finland 0.5795 0.5099 5.1006 5.7972
France 0.6346 0.6032 5.5264 5.8141
Germany 0.5487 0.5487 5.2823 5.2823
Greece 0.5664 0.5258 4.3179 4.6513
Ireland 0.9481 0.8697 4.8166 5.2512
Italy 0.7564 0.5948 4.3776 5.5665
Japan 0.4946 0.4733 5.7001 5.9569
Netherlands 0.6326 0.6179 5.3371 5.4645
Norway 0.8074 0.7053 5.0566 5.7883
Portugal 0.8863 0.7286 3.8804 4.7202
Spain 0.7242 0.6060 4.5004 5.3788
Sweden 0.5759 0.5607 5.7260 5.8804
Switzerland 0.5768 0.5768 5.4446 5.4446
UK 0.7195 0.7022 5.1712 5.2986
USA 0.8103 0.7993 5.5829 5.6603

ates) implying a heavily unbalanced workforce. An estimate of Italian or Portuguese
potential productivity which does not take such large dispersion in their human capital
distribution into account is therefore likely to be upward biased.

7 Conclusion

The paper has revisited the literature on the World Technology Frontier (WTF), i.e.
the function which assigns the maximum attainable level of GDP per worker to each
given mix of factor endowments. Thanks to the use of a database consisting both of
cross-country and of U.S. state-level data, we were able to draw the WTF with markedly
higher accuracy comparing to previous contributions: the U.S. is consistently a frontier
country and considering it to be a single data point conceals substantial technological
heterogeneity which could be used to improve the precision of the WTF estimates.

Our analysis was based on the Data Envelopment Analysis (DEA) allowing to es-
timate the WTF non-parametrically. The method allows one to decompose countries’
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productivity into (i) technical efficiency, and (ii) the frontier productivity (potential
GDP per worker attainable if the factors were used at 100% efficiency). We have used
the DEA method also for the purposes of growth accounting and development account-
ing exercises. An auxilliary use of the Cobb-Douglas functional specification enabled us
to back out the factor-specific TFP and therefore to provide an argument whether some
productivity differences were due to differences in efficiency or in the appropriateness
of technology choice. When used in growth accounting, the Cobb-Douglas assumption
enabled us to split the observed productivity improvements into factors attributable
to (i) changes in technical efficiency, (ii) shifts of the WTF, and (iii) movements along
the WTF – that is, the country’s ability to adopt a more “appropriate” technology.

Our results indicate that the WTF is spanned by a number of U.S. states such as
Delaware, Massachusetts, Colorado, and Nevada; the U.S. as a whole falls markedly
behind the frontier spanned by its most efficient states. This means that previous
estimates of the WTF have been downward biased.

Our second contribution to the DEA-based productivity literature is that following
Caselli and Coleman (2006), we have split the hitherto homogenous human capital
input into human-capital adjusted stocks of unskilled and skilled labor which might
not be perfectly substitutable. This allowed us to obtain further increases in precision
in the estimation of the WTF.

Obviously, the most important vulnerability of the current paper lies at measure-
ment and data comparability issues. What is certainly required in further research is
more reliable data, and data covering a wider range of years.

A Technical efficiency and development account-

ing for European Union’s new Member States

(NMS12)

Since 2004, twelve new countries, predominantly from the Central and Eastern Eu-
ropean region, joined the European Union. These countries were: Cyprus, Czech
Republic, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Slovakia, Slovenia in
2004, and Bulgaria and Romania in 2007. One important characteristic of all these
countries is that they produce much less output per worker than the USA or the 21
OECD countries considered in the main part of this paper. Certainly, an important
part of this distance comes from their relatively low capital stocks and low educational
attainment. But is this decisive? To answer this question, we have decomposed the dis-
tance between the NMS12 countries and the USA in terms of GDP per worker into the
components attributable to technical efficiency and differences in factor endowments.

We have re-run the estimation of WTF 2000 with NMS12 countries in the sample,
and upon this re-running, some changes appear: Bulgaria 1995, Latvia 1995, and Malta
2000 turn out to be efficient and therefore span the WTF, while several observations
from 1970–1980 fall behind the frontier. It is clear that NMS12 countries can only
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Table 11: NMS’ optimal technology choice, 2000.

Country Primary tech. Share Secondary tech. Share
Bulgaria Bulgaria 1995 0.9832 Nevada 1995 0.0168
Cyprus Nevada 2000 0.4651 Spain 1970 0.3749
Czech Republic Spain 1970 0.6757 Nevada 2000 0.2211
Estonia (1995) Latvia 1995 0.7360 Nevada 2000 0.0926
Hungary Portugal 1970 0.3899 Nevada 2000 0.3447
Latvia (1995) Latvia 1995 1.0000
Lithuania (1995) Latvia 1995 0.8359 Nevada 2000 0.0860
Malta Malta 2000 1.0000
Poland Bulgaria 1995 0.5191 Portugal 1970 0.3701
Romania Bulgaria 1995 0.8276 Portugal 1970 0.1078
Slovakia Portugal 1970 0.5403 Nevada 2000 0.2386
Slovenia Spain 1970 0.6567 Delaware 2000 0.2424

add precision to the estimation of WTF at relatively low capital levels (and in fact,
dramatically low K/H ratios – Bulgaria 1995, Latvia 1995) or extremely high LU/LS

ratios (Malta 2000). The optimal technology choices of NMS12 countries in 2000 are
presented in Table 11.

Since we do not have reliable data on NMS12 countries for the pre-1990 period when
most of them were communist states, we are unable to redo the growth accounting
exercise for them. We will thus concentrate on development accounting only.

The ratio of GDP per worker in NMS countries and the U.S. has been decomposed
non-parametrically into efficiency ratios and differences in potential GDP due to differ-
ences in factor endowments. The results are summarized in Table 12. The educational
attainment data for the NMS12 countries have taken from Barro and Lee (2001) and
not de la Fuente and Doménech (2006) who do not provide NMS data. The difference
in datasets may have an negative impact on data quality and thus lower the reliability
of the results presented below. For this reason, and for the fact that LU/LS ratios
for some NMS countries fall way apart from the ratios observed for the rich OECD
countries, we have decided to carry out this decomposition using aggregated human
capital data only.

Table 13 presents the auxilliary Cobb-Douglas-based decomposition of the pro-
ductivity ratio of NMS countries and the U.S., where efficiency is disentangled from
“appropriate technology”, i.e. factor-dependent TFP.

We learn that there are two principal reasons for which most NMS countries fall
behind the U.S. so heavily: first, they are strongly undercapitalized; second, given
their factor endowments, there does not exist a technology allowing them to produce
as much per unit of capital as the US do. For example, Bulgaria in 1995 used its
factors efficiently but it dramatically lacked not only capital, but also a decent tech-
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Table 12: Decomposition of the distance between a given NMS and the US in 2000.

Country GDP ratio Efficiency K diff H diff
Bulgaria 0.2098 1.1161 0.1882 0.9986
Cyprus 0.6206 1.1064 0.6824 0.8219
Czech Republic 0.3617 0.6604 0.7258 0.7547
Estonia (1995) 0.2387 1.0410 0.3519 0.6518
Hungary 0.3546 0.7565 0.6334 0.7401
Latvia (1995) 0.1939 1.2511 0.2365 0.6556
Lithuania (1995) 0.2184 1.0155 0.3176 0.6770
Malta 0.7398 0.9338 0.8803 0.9000
Poland 0.2481 0.9045 0.3413 0.8037
Romania 0.1626 0.6948 0.2449 0.9558
Slovakia 0.2631 0.7500 0.5108 0.6868
Slovenia 0.5288 0.8457 0.7804 0.8013

Table 13: Decomposition of the distance between a given NMS and the US in 2000
under the Cobb-Douglas assumption. Efficiency vs. “appropriate technology”.

Country GDP ratio Effic. Techn. K diff H diff
Bulgaria 0.2098 1.1161 0.4416 0.4504 0.9449
Cyprus 0.6206 1.1064 0.8472 0.7915 0.8366
Czech Republic 0.3617 0.6604 0.8565 0.7944 0.8050
Estonia (1995) 0.2387 1.0410 0.5265 0.5679 0.7670
Hungary 0.3546 0.7565 0.7836 0.7491 0.7986
Latvia (1995) 0.1939 1.2511 0.4342 0.4616 0.7734
Lithuania (1995) 0.2184 1.0155 0.5089 0.5436 0.7773
Malta 0.7398 0.9338 1.0158 0.8976 0.8689
Poland 0.2481 0.9045 0.5627 0.5865 0.8311
Romania 0.1626 0.6948 0.4996 0.5170 0.9060
Slovakia 0.2631 0.7500 0.6688 0.6752 0.7769
Slovenia 0.5288 0.8457 0.9122 0.8291 0.8269

nology which would allow to produce with such a factor mix: the frontier TFP for the
Bulgarian factor mix was only 55% of frontier TFP for the U.S. factor mix.

30



B A comment on computing productivity distribu-

tions

Most macroeconomic contributions based on the non-parametric DEA method (e.g.
Kumar and Russell, 2002; Henderson and Russell, 2005) have also emphasized the
method’s implications for the evolution of the cross-country distribution of productiv-
ity. In line with earlier findings due to Quah (1996, 1997), they showed that in the
post-war period, this distribution has evolved from a uni-modal to a visibly bi-modal
distribution, thereby providing support for the Quah’s “twin peaks” (or “club conver-
gence”) hypothesis. They also decomposed this evolution into components attributable
to factor accumulation, technological progress at the frontier, and changes in technical
efficiency.

There is one crucial caveat with these analyses, though: their basic unit of observa-
tion is a country. Although this approach might be justified on many grounds (political,
sociological, cultural, etc.), one worry will always remain – namely that countries are
very uneven in terms of their size and internal heterogeneity. Why should Luxembourg,
Netherlands, UK, USA, and China be treated on par if their sizes are so vastly differ-
ent? Analogously, why should e.g. the U.S. be weighted as one [observation], while
the European Union as 27 [observations] if these two entities are comparable in terms
of their economic size? Finally, why should an (artificial) splitting of the U.S. into its
50 constituent states shift the productivity distribution so strongly to the right, as it
would in these analyses?

These considerations bring us to the conclusion that the concept of a cross-country
productivity distribution is heavily data-driven. Split Luxembourg into a thousand
sub-Luxembourgs and they will swamp the distribution. Another misguided applica-
tion of this idea would be to try to estimate the productivity distribution within our
sample consisting of 70 “countries”, among them 50 U.S. states. This is why we don’t
do that.

Even more worryingly, stepwise disaggregation (countries to provinces) can be ex-
tended to consecutive, ever smaller territorial units such as counties or townships.
Furthermore, such disaggregation does not have to be done according to spatial cri-
teria: there could be sectoral decompositions of total GDP into agriculture, industry,
and services, and further down – into a wide range of sectoral categories.

What to do then? One idea would be to construct samples of regions of comparable
size in terms of population, and a comparable degree of internal heterogeneity. The
European Union’s NUTS classification can act as a guide in this respect. Another idea
would be to go all the way down with disaggregation and compute the world distribu-
tion of personal incomes (cf. Sala-i-Martin, 2006), having in mind that within countries,
the GDP per worker is finally distributed within the population. This requires one to
take account of within-country income inequality (neglected when computing the “pro-
ductivity distribution”), but it also requires one to compute a weighted distribution of
GDP per worker in the world, the weights being population sizes. As shown by Jones
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(1997) and Sala-i-Martin (2006), the weighted distribution is no longer bi-modal: the
huge combined weight of China, India, Pakistan, Bangladesh, Brazil, Indonesia, etc.,
makes the lower mode significantly higher than the upper “mode” which ceases to be
a mode anymore. Such an analysis is obviously beyond the scope of the current paper.
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