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Research questions

1 Does age structure of the population influence the aggregate
health care expenditure?

2 Does time-to-death distribution of the population influence the
aggregate health care expenditure?

3 How robust are these relationships?
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Why is the relationship between age and health care
expenditure important?

Pressure of health care expenditure on public finance due to ageing:

extending life-expectancy

compression of mortality

rising share of elderly in the population
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Conclusions from literature

huge effects of ageing on HCE with generational accounts
methodology

consensus on the moderate influence of ageing on the health care
expenditure with “red herring” and time-to-death

income, technological progress and institutional settings are
crucial, but age remains significant for the rise of health care
expenditure

hardly any evidence from macro data and/or cross country
comparison, even though the age-structure variables (like 65+)
often included in macro models
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Health care expenditure rises with age
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But not for decedents
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The macro approach - key points

what are the effects of including measures of age structure of
population and time-to-death simultaneously?

calculate the time-to-death for every country and every year with
the use of mortality rates

use panel data estimators

estimate models for all reasonable variations of time-to-death,
time-to-death age threshold and age structure
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Data

Human Mortality Database

OECD and WHO data on health and macro variables

final sample of 30 OECD countries and mean of 31 years per
country (max 49, min 10)
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Time-to-death calculation

The share of population Sa,i at age a ∈ {0, 1, .., 110} that will die in
i ∈ {0, 1, .., 15} years has been calculated through a transformation
from unconditional to conditional death probability:

Sa,i = da+i

i−1∏
j=0

(1− da+i) (1)

where da is death rate at age a.



Generic model

hk,l = βiSi,a,k,l + αaAg,k,l + θjXj,k,l + εk,l (2)

or
hk,l = ϕhk,l−1 + βiSi,a,k,l + αaAg,k,l + θjXj,k,l + εk,l (3)

where:
hk,l - the per capita health care expenditure in logarithm, at country k
in year l
Si,a

k,l - share of population at country k in year l that will die in i years
and is younger than a
Ag

k,l - share of population younger than g at country k in year l
Xk,l - GDP per capita (logarithm) at country k in year l
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Model space

estimation with the different combinations of
age-share: 5,10,..,95
time-to-death: 0,1,..,15
age threshold for time-to-death: 20,25,..,95

various panel data estimators:
first difference OLS with robust standard errors
fixed effects with time dummies and robust standard errors
dynamic panel model Bond-Bover (system) estimator

totally 12 960 models estimated, 270 for every time-to-death and
every model
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Fixed effects
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Blundell-Bond
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Blundell-Bond - significant and positive beta-s
(time-to-death as endogenous variable)

age-share: 90-95

time-to-death threshold: 50, 55, 95

time-to-death: 1-5, 14-15 (not 0)

0.2% of all models

no significant models with negative beta
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Conclusions

Age-share more robustly than time-to-death related to health care
expenditure, however age-share remains insignificant in fixed
effects model.

Age-share surprisingly not robust, the exact decision of the age
threshold 55, 60 or 75 might significantly influence the results.

Time-to-death most often negative and insignificant.

The reverse causality seems to be dominant - death rates are
negatively related to health care expenditure, as higher health
care expenditure reduces the mortality.

The Blundell-Bond estimator is able to deal with the endogeneity
of time-to-death.
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