# Age and Health Care Expenditure - Cross-Country Evidence

#### Maciej Lis<sup>12</sup>

<sup>1</sup>Institute for Structural Research (IBS), maciej.lis@ibs.org.pl <sup>2</sup>Warsaw School of Economics



www.ibs.org.pl

# **Research** questions

Does age structure of the population influence the aggregate health care expenditure?

Ooes time-to-death distribution of the population influence the aggregate health care expenditure?

• How robust are these relationships?



# Outline

#### Motivation

Micro evidence

#### Data

Methods

### Results



www.ibs.org.pl

Why is the relationship between age and health care expenditure important?

Pressure of health care expenditure on public finance due to ageing:

extending life-expectancy

• compression of mortality

• rising share of elderly in the population



www.ibs.org.pl

Why is the relationship between age and health care expenditure important?

Pressure of health care expenditure on public finance due to ageing:

• extending life-expectancy

• compression of mortality

• rising share of elderly in the population



Why is the relationship between age and health care expenditure important?

Pressure of health care expenditure on public finance due to ageing:

• extending life-expectancy

• compression of mortality

• rising share of elderly in the population



www.ibs.org.pl

• huge effects of ageing on HCE with generational accounts methodology

- consensus on the moderate influence of ageing on the health care expenditure with "red herring" and time-to-death
- income, technological progress and institutional settings are crucial, but age remains significant for the rise of health care expenditure
- hardly any evidence from macro data and/or cross country comparison, even though the age-structure variables (like 65+) often included in macro models



- huge effects of ageing on HCE with generational accounts methodology
- consensus on the moderate influence of ageing on the health care expenditure with "red herring" and time-to-death
- income, technological progress and institutional settings are crucial, but age remains significant for the rise of health care expenditure
- hardly any evidence from macro data and/or cross country comparison, even though the age-structure variables (like 65+) often included in macro models



- huge effects of ageing on HCE with generational accounts methodology
- consensus on the moderate influence of ageing on the health care expenditure with "red herring" and time-to-death
- income, technological progress and institutional settings are crucial, but age remains significant for the rise of health care expenditure
- hardly any evidence from macro data and/or cross country comparison, even though the age-structure variables (like 65+) often included in macro models



- huge effects of ageing on HCE with generational accounts methodology
- consensus on the moderate influence of ageing on the health care expenditure with "red herring" and time-to-death
- income, technological progress and institutional settings are crucial, but age remains significant for the rise of health care expenditure
- hardly any evidence from macro data and/or cross country comparison, even though the age-structure variables (like 65+) often included in macro models



# Health care expenditure rises with age



### But not for decedents



www.ibs.org.pl



• what are the effects of including measures of age structure of population and time-to-death simultaneously?

- calculate the time-to-death for every country and every year with the use of mortality rates
- use panel data estimators
- estimate models for all reasonable variations of time-to-death, time-to-death age threshold and age structure



- what are the effects of including measures of age structure of population and time-to-death simultaneously?
- calculate the time-to-death for every country and every year with the use of mortality rates
- use panel data estimators
- estimate models for all reasonable variations of time-to-death, time-to-death age threshold and age structure



- what are the effects of including measures of age structure of population and time-to-death simultaneously?
- calculate the time-to-death for every country and every year with the use of mortality rates
- use panel data estimators
- estimate models for all reasonable variations of time-to-death, time-to-death age threshold and age structure



- what are the effects of including measures of age structure of population and time-to-death simultaneously?
- calculate the time-to-death for every country and every year with the use of mortality rates
- use panel data estimators
- estimate models for all reasonable variations of time-to-death, time-to-death age threshold and age structure





#### • Human Mortality Database

- OECD and WHO data on health and macro variables
- final sample of 30 OECD countries and mean of 31 years per country (max 49, min 10)



www.ibs.org.pl

- Human Mortality Database
- OECD and WHO data on health and macro variables
- final sample of 30 OECD countries and mean of 31 years per country (max 49, min 10)



- Human Mortality Database
- OECD and WHO data on health and macro variables
- final sample of 30 OECD countries and mean of 31 years per country (max 49, min 10)



## Time-to-death calculation

The share of population  $S_{a,i}$  at age  $a \in \{0, 1, ..., 110\}$  that will die in  $i \in \{0, 1, ..., 15\}$  years has been calculated through a transformation from unconditional to conditional death probability:

$$S_{a,i} = d_{a+i} \prod_{j=0}^{i-1} (1 - d_{a+i})$$
(1)

where  $d_a$  is death rate at age a.



$$h_{k,l} = \beta^i S_{i,a,k,l} + \alpha^a A_{g,k,l} + \theta_j X_{j,k,l} + \epsilon_{k,l}$$
(2)

www.ibs.org.p

or

$$h_{k,l} = \varphi h_{k,l-1} + \beta^i S_{i,a,k,l} + \alpha^a A_{g,k,l} + \theta_j X_{j,k,l} + \epsilon_{k,l}$$
(3)

#### where:

 $h_{k,l}$  - the per capita health care expenditure in logarithm, at country k in year l

 $S_{k,l}^{l,a}$  - share of population at country k in year l that will die in i years and is younger than a

 $A_{k,l}^g$  - share of population younger than *g* at country *k* in year *l*  $X_{k,l}$  - GDP per capita (logarithm) at country *k* in year *l* 



$$h_{k,l} = \beta^i S_{i,a,k,l} + \alpha^a A_{g,k,l} + \theta_j X_{j,k,l} + \epsilon_{k,l}$$
(2)

www.ibs.org.p

#### or

$$h_{k,l} = \varphi h_{k,l-1} + \beta^i S_{i,a,k,l} + \alpha^a A_{g,k,l} + \theta_j X_{j,k,l} + \epsilon_{k,l}$$
(3)

#### where:

 $h_{k,l}$  - the per capita health care expenditure in logarithm, at country k in year l

 $S_{k,l}^{l,a}$  - share of population at country k in year l that will die in i years and is younger than a

 $A_{k,l}^g$  - share of population younger than *g* at country *k* in year *l*  $X_{k,l}$  - GDP per capita (logarithm) at country *k* in year *l* 



$$h_{k,l} = \beta^i S_{i,a,k,l} + \alpha^a A_{g,k,l} + \theta_j X_{j,k,l} + \epsilon_{k,l}$$
(2)

www.ibs.org.p

or

$$h_{k,l} = \varphi h_{k,l-1} + \beta^{i} S_{i,a,k,l} + \alpha^{a} A_{g,k,l} + \theta_{j} X_{j,k,l} + \epsilon_{k,l}$$
(3)

#### where:

 $h_{k,l}$  - the per capita health care expenditure in logarithm, at country k in year l

 $S_{k,l}^{i,a}$  - share of population at country k in year l that will die in i years and is younger than a

 $A_{k,l}^{g}$  - share of population younger than g at country k in year l  $X_{k,l}$  - GDP per capita (logarithm) at country k in year l



$$\boldsymbol{h}_{\boldsymbol{k},\boldsymbol{l}} = \beta^{i} S_{i,a,k,l} + \alpha^{a} A_{g,k,l} + \theta_{j} X_{j,k,l} + \epsilon_{k,l} \tag{2}$$

www.ibs.ora.p

or

$$h_{k,l} = \varphi h_{k,l-1} + \beta^i S_{i,a,k,l} + \alpha^a A_{g,k,l} + \theta_j X_{j,k,l} + \epsilon_{k,l}$$
(3)

where:

 $h_{k,l}$  - the per capita health care expenditure in logarithm, at country k in year l

 $S_{k,l}^{l,a}$  - share of population at country k in year l that will die in i years and is younger than a

 $A_{k,l}^g$  - share of population younger than *g* at country *k* in year *l*  $X_{k,l}$  - GDP per capita (logarithm) at country *k* in year *l* 



$$h_{k,l} = \beta^{i} S_{i,a,k,l} + \alpha^{a} A_{g,k,l} + \theta_{j} X_{j,k,l} + \epsilon_{k,l}$$
(2)

www.ibs.ora.p

or

$$h_{k,l} = \varphi h_{k,l-1} + \beta^{i} \mathbf{S}_{i,a,k,l} + \alpha^{a} A_{g,k,l} + \theta_{j} X_{j,k,l} + \epsilon_{k,l}$$
(3)

#### where:

 $h_{k,l}$  - the per capita health care expenditure in logarithm, at country k in year l

 $S_{k,l}^{i,a}$  - share of population at country k in year l that will die in i years and is younger than a

 $A_{k,l}^g$  - share of population younger than *g* at country *k* in year *l*  $X_{k,l}$  - GDP per capita (logarithm) at country *k* in year *l* 



$$h_{k,l} = \beta^{i} S_{i,a,k,l} + \alpha^{a} A_{g,k,l} + \theta_{j} X_{j,k,l} + \epsilon_{k,l}$$
(2)

www.ibs.ora.p

or

$$h_{k,l} = \varphi h_{k,l-1} + \beta^{i} S_{i,a,k,l} + \alpha^{a} A_{g,k,l} + \theta_{j} X_{j,k,l} + \epsilon_{k,l}$$
(3)

#### where:

 $h_{k,l}$  - the per capita health care expenditure in logarithm, at country k in year l

 $S_{k,l}^{l,a}$  - share of population at country k in year l that will die in i years and is younger than a

 $A_{k,l}^{g}$  - share of population younger than *g* at country *k* in year *l*  $X_{k,l}$  - GDP per capita (logarithm) at country *k* in year *l* 



$$h_{k,l} = \beta^i S_{i,a,k,l} + \alpha^a A_{g,k,l} + \theta_j X_{j,k,l} + \epsilon_{k,l}$$
(2)

www.ibs.ora.p

or

$$h_{k,l} = \varphi h_{k,l-1} + \beta^i S_{i,a,k,l} + \alpha^a A_{g,k,l} + \theta_j X_{j,k,l} + \epsilon_{k,l}$$
(3)

#### where:

 $h_{k,l}$  - the per capita health care expenditure in logarithm, at country k in year l

 $S_{k,l}^{l,a}$  - share of population at country k in year l that will die in i years and is younger than a

 $A_{k,l}^{g}$  - share of population younger than g at country k in year l  $X_{k,l}$  - GDP per capita (logarithm) at country k in year l



# Model space

#### • estimation with the different combinations of

- age-share: 5,10,...,95
- time-to-death: 0,1,..,15
- age threshold for time-to-death: 20,25,..,95
- various panel data estimators:
  - first difference OLS with robust standard errors
  - fixed effects with time dummies and robust standard errors
  - dynamic panel model Bond-Bover (system) estimator
- totally 12 960 models estimated, 270 for every time-to-death and every model



# Model space

• estimation with the different combinations of

- age-share: 5,10,...,95
- time-to-death: 0,1,..,15
- age threshold for time-to-death: 20,25,...,95
- various panel data estimators:
  - first difference OLS with robust standard errors
  - fixed effects with time dummies and robust standard errors
  - dynamic panel model Bond-Bover (system) estimator
- totally 12 960 models estimated, 270 for every time-to-death and every model



# Model space

• estimation with the different combinations of

- age-share: 5,10,...,95
- time-to-death: 0,1,..,15
- age threshold for time-to-death: 20,25,...,95
- various panel data estimators:
  - first difference OLS with robust standard errors
  - fixed effects with time dummies and robust standard errors
  - dynamic panel model Bond-Bover (system) estimator

# • totally 12 960 models estimated, 270 for every time-to-death and every model







#### first difference





# Fixed effects



# Fixed effects


## Fixed effects



## Fixed effects















INSTYTUT BADAN STRUKTURALNYCH

#### • age-share: 90-95

- time-to-death threshold: 50, 55, 95
- time-to-death: 1-5, 14-15 (not 0)
- 0.2% of all models
- no significant models with negative beta



- age-share: 90-95
- time-to-death threshold: 50, 55, 95
- time-to-death: 1-5, 14-15 (not 0)
- 0.2% of all models
- no significant models with negative beta



- age-share: 90-95
- time-to-death threshold: 50, 55, 95
- time-to-death: 1-5, 14-15 (not 0)
- 0.2% of all models
- no significant models with negative beta



- age-share: 90-95
- time-to-death threshold: 50, 55, 95
- time-to-death: 1-5, 14-15 (not 0)
- 0.2% of all models
- no significant models with negative beta



- age-share: 90-95
- time-to-death threshold: 50, 55, 95
- time-to-death: 1-5, 14-15 (not 0)
- 0.2% of all models
- no significant models with negative beta



- Age-share more robustly than time-to-death related to health care expenditure, however age-share remains insignificant in fixed effects model.
- Age-share surprisingly not robust, the exact decision of the age threshold 55, 60 or 75 might significantly influence the results.
- Time-to-death most often negative and insignificant.
- The reverse causality seems to be dominant death rates are negatively related to health care expenditure, as higher health care expenditure reduces the mortality.
- The Blundell-Bond estimator is able to deal with the endogeneity of time-to-death.



- Age-share more robustly than time-to-death related to health care expenditure, however age-share remains insignificant in fixed effects model.
- Age-share surprisingly not robust, the exact decision of the age threshold 55, 60 or 75 might significantly influence the results.
- Time-to-death most often negative and insignificant.
- The reverse causality seems to be dominant death rates are negatively related to health care expenditure, as higher health care expenditure reduces the mortality.
- The Blundell-Bond estimator is able to deal with the endogeneity of time-to-death.



- Age-share more robustly than time-to-death related to health care expenditure, however age-share remains insignificant in fixed effects model.
- Age-share surprisingly not robust, the exact decision of the age threshold 55, 60 or 75 might significantly influence the results.
- Time-to-death most often negative and insignificant.
- The reverse causality seems to be dominant death rates are negatively related to health care expenditure, as higher health care expenditure reduces the mortality.
- The Blundell-Bond estimator is able to deal with the endogeneity of time-to-death.



- Age-share more robustly than time-to-death related to health care expenditure, however age-share remains insignificant in fixed effects model.
- Age-share surprisingly not robust, the exact decision of the age threshold 55, 60 or 75 might significantly influence the results.
- Time-to-death most often negative and insignificant.
- The reverse causality seems to be dominant death rates are negatively related to health care expenditure, as higher health care expenditure reduces the mortality.
- The Blundell-Bond estimator is able to deal with the endogeneity of time-to-death.



- Age-share more robustly than time-to-death related to health care expenditure, however age-share remains insignificant in fixed effects model.
- Age-share surprisingly not robust, the exact decision of the age threshold 55, 60 or 75 might significantly influence the results.
- Time-to-death most often negative and insignificant.
- The reverse causality seems to be dominant death rates are negatively related to health care expenditure, as higher health care expenditure reduces the mortality.
- The Blundell-Bond estimator is able to deal with the endogeneity of time-to-death.



Further questions?

maciej.lis@ibs.org.pl

