

Do we need gas as a bridging fuel?

A case study of the electricity system

Paula Díaz & Oscar van Vliet / CP / D-USYS

Contents

- Swiss electricity system & Energy Strategy
- Impact of renewables and gas as a bridging fuel
- Implications for other countries
- Outlook for renewables without gas

Current electricity production in Switzerland

Swiss Energy Strategy 2050

source: Bundesambt für Energie

optimise

over time

VS.

Scenario analysis

intermittent supply

variable demand

Swiss renewables + natural gas North Sea

Morocco

North Sea wind imports in Winter

Moroccan CSP imports in Summer

Díaz et al, 2017

100% renewables is not a problem for Switzerland

- Wind and/or CSP can cover demand
 - Complementary production profile, mix is cheaper
- Not enough hydro to cover all PV without batteries
- Rooftop PV and imported wind are generally supported (*Plum et al.*, in preparation)

We can build that.

Cost implications

Díaz et al, 2017

Climate change impacts on hydropower

Knüsel et al., in review with Climatic Change

Risks of low-carbon transition in Poland | 15

What about countries without 60% hydropower?

- Poland
- United Kingdom
- ... everywhere in Europe except Switzerland and Norway

Renewables vs. base load

Gas + Renewables

40 GW of Nuclear

Making PV less intermittent

Making CSP less intermittent

Figure 1 | Total output for the year 2005 from 100 plants spread across locations in the Mediterranean basin. a. The plants are operated without concern for demand or coordination: in each hour, each plant produces as much power as possible. See text for plant dimensions. b, The size of the solar field is doubled, while the power block and storage size is kept constant.

Pfenninger et al., 2014

Making wind power less intermittent

Do we need gas as a bridging fuel?

- Not in Switzerland, would be more expensive
- Probably not elsewhere
- Coal and nuclear face unfavourable conditions in open EU power market

Thank you

Questions? Comments?

- Paula Díaz (New Risks) paula.diaz@usys.ethz.ch
- Oscar van Vliet (New Risks, TRANSrisk) oscar.vanvliet@usys.ethz.ch
- Stefan Pfenninger (Calliope) stefan.pfenninger@usys.ethz.ch

References

- Díaz et al., 2017, Do We Need Gas as a Bridging Fuel? A Case Study of the Electricity System of Switzerland, <u>http://dx.doi.org/10.3390/EN10070861</u>
- Knüsel et al., 2018, Changing Seasonality of Hydropower Production Facilitates the Integration of Large Shares of Solar Energy, *in review*
- Plum et al, 2018, Same but Different Public preferences for the Swiss electricity system after the nuclear phase-out: A choice experiment, *in* preparation
- Pfenninger et al, 2014, Vulnerability of solar energy infrastructure and output to climate change, <u>http://dx.doi.org/10.1007/s10584-013-0887-0</u>
- Grams et al, 2017, Balancing Europe's wind-power output through spatial deployment informed by weather regimes, <u>http://dx.doi.org/10.1038/nclimate3338</u>